Previous |  Up |  Next


unilateral contact; Coulomb friction; finite elements; existence proofs
A unilateral contact problem with a variable coefficient of friction is solved by a simplest variant of the finite element technique. The coefficient of friction may depend on the magnitude of the tangential displacement. The existence of an approximate solution and some a priori estimates are proved.
[1] P. G. Ciarlet: Basic Error Estimates for Elliptic Problems. In: Handbook of Numerical Analysis, vol. II, P. G. Ciarlet, J. L. Lions (eds.), North-Holland, Amsterdam, 1991. MR 1115237 | Zbl 0875.65086
[2] Ch. Eck: Existenz und Regularität der Lösungen für Kontaktprobleme mit Reibung. Dissertation Thesis. Univ. Stuttgart, 1996. MR 1466960
[3] Ch. Eck, J. Jarušek: Existence results for the static contact problem with Coulomb friction. Math. Models Methods Appl. Sci. 8 (1998), 445–468. DOI 10.1142/S0218202598000196 | MR 1624879
[4] J. Franců: Monotone operators. A survey directed to applications to differential equations. Appl. Math. 35 (1990), 257–301. MR 1065003
[5] J. Haslinger: Least square method for solving contact problems with friction obeying the Coulomb law. Appl. Math. 29 (1984), 212–224. MR 0747213 | Zbl 0557.73100
[6] J. Haslinger: Approximation of the Signorini problem with friction, obeying Coulomb law. Math. Methods Appl. Sci. 5 (1983), 422–437. DOI 10.1002/mma.1670050127 | MR 0716664
[7] C. Licht, E. Pratt and M. Raous: Remarks on a numerical method for unilateral contact including friction. In: Unilateral Problems in Structural Analysis, Birkhäuser, Basel, 1991, pp. 129–144. MR 1169548
Partner of
EuDML logo