Previous |  Up |  Next


homogenization; effective properties; variational methods; nonlinear composites
In this paper we derive lower bounds and upper bounds on the effective properties for nonlinear heterogeneous systems. The key result to obtain these bounds is to derive a variational principle, which generalizes the variational principle by P. Ponte Castaneda from 1992. In general, when the Ponte Castaneda variational principle is used one only gets either a lower or an upper bound depending on the growth conditions. In this paper we overcome this problem by using our new variational principle together with the bounds presented by Lukkassen, Persson and Wall in 1995. Moreover, we also present some examples where the bounds are so tight that they may be used as a good estimate of the effective behavior.
[1] A. Braides, D. Lukkassen: Reiterated homogenization of integral functionals. Math.  Models Methods Appl.  Sci, to appear. MR 1749689
[2] P. Ponte  Castaneda: Bounds and estimates for the properties of nonlinear heterogeneous systems. Philos. Trans. Roy. Soc. London Ser.  A. 340 (1992), 531–567. DOI 10.1098/rsta.1992.0079 | MR 1192288 | Zbl 0776.73062
[3] P. Ponte  Castaneda: A new variational principle and its application to nonlinear heterogeneous systems. SIAM J.  Appl. Math. 52 (1992), 1321–1341. DOI 10.1137/0152076 | MR 1182126 | Zbl 0759.73064
[4] G. Dal  Maso: An Introduction to $\Gamma $-convergence. Birkhäuser, Boston, 1993. MR 1201152 | Zbl 0816.49001
[5] I. Ekeland, R. Temam: Convex analysis and variational problems. Studies in Mathematics and Its Applications, Vol. 1. North-Holland, Amsterdam, 1976. MR 0463994
[6] V. V. Jikov, S. M. Kozlov and O. A. Oleinik: Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin-Heidelberg-New York, 1994. MR 1329546
[7] D. Lukkassen: Formulae and bounds connected to optimal design and homogenization of partial differential operators and integral functionals. (1996), Ph. D. Thesis, Dept.  of  Math., Tromsö University, Norway.
[8] D. Lukkassen: Some sharp estimates connected to the homogenized $p$-Laplacian equation. Z. Angew. Math. Mech. 76 (S2) (1996), 603–604. Zbl 1126.35303
[9] D. Lukkassen, L. E. Persson and P. Wall: On some sharp bounds for the $p$-Poisson equation. Appl. Anal. 58 (1995), 123–135. DOI 10.1080/00036819508840366 | MR 1384593
[10] D. R .S. Talbot, J. R. Willis: Variational principles for nonlinear inhomogeneous media. IMA J.  Appl. Math. 35 (1985), 39–54. DOI 10.1093/imamat/35.1.39 | MR 0820896
[11] D. R. S. Talbot, J. R. Willis: Bounds and self-consistent estimates for the overall properties of nonlinear composites. IMA J.  Appl. Math. 39 (1987), 215–240. DOI 10.1093/imamat/39.3.215 | MR 0983743
[12] J. van  Tiel: Convex Analysis. John Wiley and Sons Ltd., New York, 1984. MR 0743904 | Zbl 0565.49001
[13] P. Wall: Optimal bounds on the effective shear moduli for some nonlinear and reiterated problems. Acta Sci. Math. 65 (1999), 553–566. MR 1737271 | Zbl 0987.35027
Partner of
EuDML logo