Previous |  Up |  Next


variational inequality; hysteresis operators
It is known that the vector stop operator with a convex closed characteristic $Z$ of class $C^1$ is locally Lipschitz continuous in the space of absolutely continuous functions if the unit outward normal mapping $n$ is Lipschitz continuous on the boundary $\partial Z$ of $Z$. We prove that in the regular case, this condition is also necessary.
[1] H.-D. Alber: Materials with Memory. Lecture Notes in Mathematics, Vol. 1682. Springer-Verlag, Berlin-Heidelberg, 1998. MR 1619546
[2] A. Bergqvist: Magnetic vector hysteresis model with dry friction-like pinning. Physica B 233 (1997), 342–347. DOI 10.1016/S0921-4526(97)00319-0
[3] H. Brézis: Opérateurs Maximaux Monotones. North-Holland Math. Studies, Amsterdam, 1973.
[4] M. Brokate: Elastoplastic constitutive laws of nonlinear kinematic hardening type. In: Functional Analysis with Current Applications in Science, Technology and Industry (M. Brokate, A. H. Siddiqi, eds.), Pitman Res. Notes Math. Ser., 377, Longman, Harlow, 1998, pp. 238–272. MR 1607891 | Zbl 0911.73021
[5] M. Brokate, P. Krejčí: Wellposedness of kinematic hardening models in elastoplasticity. Math. Modelling Numer. Anal. 32 (1998), 177–209. MR 1622607
[6] W. Desch: Local Lipschitz continuity of the stop operator. Appl. Math. 43 (1998), 461–477. DOI 10.1023/A:1023221405455 | MR 1652108 | Zbl 0937.47058
[7] W. Desch, J. Turi: The stop operator related to a convex polyhedron. J. Differential Equations 157 (1999), 329–347. DOI 10.1006/jdeq.1998.3601 | MR 1710220
[8] P. Dupuis, H. Ishii: On Lipschitz continuity of the solution mapping to the Skorokhod problem. Stochastics Stochastics Rep. 35 (1991), 31–62. DOI 10.1080/17442509108833688 | MR 1110990
[9] P. Dupuis, A. Nagurney: Dynamical systems and variational inequalities. Ann. Oper. Res. 44 (1993), 9–42. MR 1246835
[10] G. Duvaut, J.-L. Lions: Inequalities in Mechanics and Physics. Springer-Verlag, Berlin, 1976, French edition: Dunod, Paris, 1972. MR 0521262
[11] M. A. Krasnoseľskiǐ, A. V. Pokrovskiǐ: Systems with Hysteresis. Springer-Verlag, Berlin, 1989, Russian edition: Nauka, Moscow, 1983. MR 0742931
[12] P. Krejčí: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakuto Int. Ser. Math. Sci. Appl., Vol. 8. Gakkōtosho, Tokyo, 1996. MR 2466538
[13] P. Krejčí: Evolution variational inequalities and multidimensional hysteresis operators. In: Nonlinear Differential Equations (P. Drábek, P. Krejčí and P. Takáč, eds.). Research Notes in Mathematics, Vol. 404, Chapman & Hall/CRC, London, 1999, pp. 47–110. MR 1695378
[14] J.-J. Moreau: Evolution problem associated with a moving convex set in a Hilbert space. J. Differential Eqations 26 (1977), 347–374. MR 0508661
[15] J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elastico-Plastic Bodies: An Introduction. Elsevier, Amsterdam, 1981. MR 0600655
[16] A. Visintin: Differential Models of Hysteresis. Springer-Verlag, Berlin-Heidelberg, 1994. MR 1329094 | Zbl 0820.35004
Partner of
EuDML logo