Previous |  Up |  Next


elliptic equation; nonlinear Newton boundary condition; monotone operator method; finite element approximation; approximation of a curved boundary; numerical integration; ideal triangulation; ideal interpolation; convergence of the finite element method
The paper is concerned with the study of an elliptic boundary value problem with a nonlinear Newton boundary condition considered in a two-dimensional nonpolygonal domain with a curved boundary. The existence and uniqueness of the solution of the continuous problem is a consequence of the monotone operator theory. The main attention is paid to the effect of the basic finite element variational crimes: approximation of the curved boundary by a polygonal one and the evaluation of integrals by numerical quadratures. With the aid of some important properties of Zlámal’s ideal triangulation and interpolation, the convergence of the method is analyzed.
[1] R.  Bialecki, A. J.  Nowak: Boundary value problems in heat conduction with nonlinear material and nonlinear boundary conditions. Appl. Math. Modelling 5 (1981), 417–421. DOI 10.1016/S0307-904X(81)80024-8
[2] S. S. Chow: Finite element error estimates for nonlinear elliptic equations of monotone type. Numer. Math. 54 (1988), 373–393. MR 0972416 | Zbl 0643.65058
[3] P. G. Ciarlet: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, 1978. MR 0520174 | Zbl 0383.65058
[4] P. G.  Ciarlet, P. A. Raviart: The combined effect of curved boundaries and numerical integration in isoparametric finite element method. In: The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations, A. K. Aziz (ed.), Academic Press, New York, 1972, pp. 409–474. MR 0421108
[5] M.  Feistauer: On the finite element approximation of a cascade flow problem. Numer. Math. 50 (1987), 655–684. DOI 10.1007/BF01398378 | MR 0884294 | Zbl 0646.76085
[6] M.  Feistauer, H. Kalis and M. Rokyta: Mathematical modelling of an electrolysis process. Comment. Math. Univ. Carolin. 30 (1989), 465–477. MR 1031864
[7] M. Feistauer, M.  Křížek and V.  Sobotíková: An analysis of finite element variational crimes for a nonlinear elliptic problem of a nonmonotone type. East-West J.  Numer. Math. 1 (1993), 267–285. MR 1318806
[8] M.  Feistauer, K.  Najzar: Finite element approximation of a problem with a nonlinear Newton boundary condition. Numer. Math. 78 (1998), 403–425. DOI 10.1007/s002110050318 | MR 1603350
[9] M.  Feistauer, K.  Najzar and V. Sobotíková: Error estimates for the finite element solution of elliptic problems with nonlinear Newton boundary conditions. Numer. Funct. Anal. Optim. 20 (1999), 835–851. DOI 10.1080/01630569908816927 | MR 1728186
[10] M.  Feistauer, K.  Najzar, V.  Sobotíková and P.  Sváček: Numerical analysis of problems with nonlinear Newton boundary conditions. In: Numerical Mathematics and Advanced Applications, Proc. of the Conf. ENUMATH99, P.  Neittaanmäki, T. Tiihonen and P. Tarvainen (eds.), World Scientific, Singapore, 2000, pp. 486–493.
[11] M.  Feistauer, V.  Sobotíková: Finite element approximation of nonlinear elliptic problems with discontinuous coefficients. RAIRO Modél. Math. Anal. Numér. 24 (1990), 457–500. MR 1070966
[12] M.  Feistauer, A.  Ženíšek: Finite element solution of nonlinear elliptic problems. Numer. Math. 50 (1987), 451–475. DOI 10.1007/BF01396664 | MR 0875168
[13] M.  Feistauer, A.  Ženíšek: Compactness method in the finite element theory of nonlinear elliptic problems. Numer. Math. 52 (1988), 147–163. DOI 10.1007/BF01398687 | MR 0923708
[14] J. Franců: Monotone operators. A survey directed to applications to differential equations. Appl. Math. 35 (1990), 257–301. MR 1065003
[15] M.  Ganesh, I. G.  Graham and J.  Sivaloganathan: A pseudospectral three-dimensional boundary integral method applied to a nonlinear model problem from finite elasticity. SIAM J.  Numer. Anal. 31 (1994), 1378–1414. DOI 10.1137/0731072 | MR 1293521
[16] M. Ganesh, O. Steinbach: Boundary element methods for potential problems with nonlinear boundary conditions. Applied Mathematics Report AMR98/17, School of Mathematics, The University of New South Wales, Sydney (1998).
[17] M.  Ganesh, O.  Steinbach: Nonlinear boundary integral equations for harmonic problems. Applied Mathematics Report AMR98/20, School of Mathematics, The University of New South Wales, Sydney (1998). MR 1738277
[18] J.  Gwinner: A discretization theory for monotone semicoercive problems and finite element convergence for $p$-harmonic Signorini problems. Z. Angew. Math. Mech. 74 (1994), 417–427. DOI 10.1002/zamm.19940740917 | MR 1296460 | Zbl 0823.31006
[19] M.  Křížek, L.  Liu and P.  Neittaanmäki: Finite element analysis of a nonlinear elliptic problem with a pure radiation condition. In: Applied Nonlinear Analysis, Kluwer, Amsterdam, 1999, pp. 271–280. MR 1727454
[20] A.  Kufner, O.  John and S.  Fučík: Function Spaces. Academia, Praha, 1977. MR 0482102
[21] L.  Liu, M.  Křížek: Finite element analysis of a radiation heat transfer problem. J.  Comput. Math. 16 (1998), 327–336.
[22] R. Moreau, J. W.  Ewans: An analysis of the hydrodynamics of aluminium reduction cells. J.  Electrochem. Soc. 31 (1984), 2251–2259.
[23] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. MR 0227584
[24] V. Sobotíková: Finite elements on curved domains. East-West J.  Numer. Math. 4 (1996), 137–149. MR 1403648
[25] G.  Strang: Variational crimes in the finite element method. In: The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations, A. K. Aziz (ed.), Academic Press, New York, 1972, pp. 689–710. MR 0413554 | Zbl 0264.65068
[26] P.  Sváček: Higher order finite element method for a problem with nonlinear boundary condition. In: Proc. of the 13th Summer School “Software and Algorithms of Numerical Mathematics”, University of West Bohemia in Pilsen, 1999, pp. 301–308.
[27] A. Ženíšek: Nonhomogeneous boundary conditions and curved triangular finite elements. Appl. Math. 26 (1981), 121–141. MR 0612669
[28] A.  Ženíšek: The finite element method for nonlinear elliptic equations with discontinuous coefficients. Numer. Math. 58 (1990), 51–77. DOI 10.1007/BF01385610 | MR 1069653
[29] A.  Ženíšek: Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations. Academic Press, London, 1990. MR 1086876
[30] M.  Zlámal: Curved elements in the finite element method, I. SIAM J.  Numer. Anal. 10 (1973), 229–240. DOI 10.1137/0710022 | MR 0395263
Partner of
EuDML logo