Previous |  Up |  Next


stochastic spatial process; second order stationarity; kriging; prediction
This paper describes a modification of the kriging method for working with the square root transformation of a spatial random process. We have developed this method for the situation where the spatial process observed is not supposed to be stationary but the assumption is that its square root is a second order stationary spatial random process. Consequently this method is developed for estimating the integral of the process observed and finally some application of the method is given to data from an environmental radioactivity survey.
[1] M. Asli, D.  Marcotte: Comparison of approaches to spatial estimation in a bivariate context. Mathematical Geology 27 (1995), 641–658. DOI 10.1007/BF02093905
[2] N. A. C. Cressie: Statistic for Spatial Data. Wiley, New York, 1993. MR 1239641
[3] P. J. Diggle, R. A. Moyeed and J. A. Tawn: Non-gaussian geostatistics. Research note, Lancaster University, Technical Report MA95 (1996).
[4] P. J. Diggle, J. A. Tawn and R. A. Moyeed: Model-based geostatistics. J. Roy. Statist. Soc. Ser.  C 47 (1998), 199–350. MR 1626544
[5] U. C.  Herzfeld, D. F. Merriam: Optimization techniques for integrating spatial data. Mathematical Geology 27 (1995), 559–588. DOI 10.1007/BF02093901
[6] P. Krejčíř: The Theory and Applications of Spatial Statistics and Stochastic Geometry. PhD thesis, Charles University, Prague (2000).
[7] R. J. Serfling: Approximation Theorems of Mathematical Statistics. Wiley, New York, 1980. MR 0595165 | Zbl 0538.62002
[8] M. L. Stein: Predicting integrals of random fields using observation an a lattice. Ann. Statist. 23 (1995), 1975–1990. MR 1389861
Partner of
EuDML logo