Previous |  Up |  Next


elastic material; viscoelastic material; frictional contact; evolution variational inequality; fixed point; weak solution; approach to elasticity; subdifferential boundary conditions
We consider two quasistatic problems which describe the frictional contact between a deformable body and an obstacle, the so-called foundation. In the first problem the body is assumed to have a viscoelastic behavior, while in the other it is assumed to be elastic. The frictional contact is modeled by a general velocity dependent dissipation functional. We derive weak formulations for the models and prove existence and uniqueness results. The proofs are based on the theory of evolution variational inequalities and fixed-point arguments. We also prove that the solution of the viscoelastic problem converges to the solution of the corresponding elastic problem, as the viscosity tensor converges to zero. Finally, we describe a number of concrete contact and friction conditions to which our results apply.
[1] A.  Amassad, M.  Shillor and M.  Sofonea: A quasistatic contact problem for an elastic perfectly plastic body with Tresca’s friction. Nonlinear Anal. 35 (1999), 95–109. DOI 10.1016/S0362-546X(98)00100-X | MR 1633958
[2] A.  Amassad, M.  Sofonea: Analysis of a quasistatic viscoplastic problem involving Tresca friction law. Discrete Contin. Dynam. Systems 4 (1998), 55–72. MR 1485363
[3] L.-E.  Anderson: A quasistatic frictional problem with normal compliance. Nonlinear Anal. TMA 16 (1991), 347–370. MR 1093846
[4] L.-E. Anderson: A global existence result for a quasistatic contact problem with friction. Adv. Math. Sci. Appl. 5 (1995), 249–286. MR 1325968
[5] H.  Brézis: Equations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier 18 (1968), 115–175. DOI 10.5802/aif.280 | MR 0270222
[6] H.  Brézis: Problèmes unilatéraux. J.  Math. Pures et Appl. 51 (1972), 1–168.
[7] J.  Chen, W.  Han and M.  Sofonea: Numerical analysis of a quasistatic problem of sliding frictional contact with wear. Methods Appl. Anal. 7 (2000), 687–704. MR 1868552
[8] M.  Cocu, E.  Pratt and M.  Raous: Formulation and approximation of quasistatic frictional contact. Internat. J.  Engrg. Sci. 34 (1996), 783–798. DOI 10.1016/0020-7225(95)00121-2 | MR 1397607
[9] G.  Duvaut, J. L. Lions: Inequalities in Mechanics and Physics. Springer-Verlag, Berlin, 1976. MR 0521262
[10] C. Eck, J. Jarušek: The solvability of a coupled thermoviscoelastic contact problem with small Coulomb friction and linearized growth of frictional heat. Math. Meth. Appl. Sci. 22 (1999), 1221–1234. DOI 10.1002/(SICI)1099-1476(19990925)22:14<1221::AID-MMA78>3.0.CO;2-M | MR 1710706
[11] W.  Han, B. D.  Reddy: Plasticity: Mathematical Theory and Numerical Analysis. Springer-Verlag, New York, 1999. MR 1681061
[12] W.  Han, M.  Sofonea: Evolutionary variational inequalities arising in viscoelastic contact problems. SIAM J.  Numer. Anal. 38 (2000), 556–579. DOI 10.1137/S0036142998347309 | MR 1770062
[13] I. R.  Ionescu, M.  Sofonea: Functional and Numerical Methods in Viscoplasticity. Oxford University Press, Oxford, 1993. MR 1244578
[14] N.  Kikuchi, J. T.  Oden: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia, 1988. MR 0961258
[15] I.  Hlaváček, J.  Haslinger, J.  Nečas and J.  Lovíšek: Solution of Variational Inequalities in Mechanics. Springer-Verlag, New York, 1988. MR 0952855
[17] J. Jarušek: Dynamic contact problems with given friction for viscoelastic bodies. Czechoslovak Math.  J. 46 (1996), 475–487. MR 1408299
[18] J. Jarušek, C. Eck: Dynamic contact problems with small Coulomb friction for viscoelastic bodies. Existence of solutions. Math. Models Methods Appl. Sci. 9 (1999), 11–34. DOI 10.1142/S0218202599000038 | MR 1671535
[19] A.  Klarbring, A.  Mikelič and M.  Shillor: A global existence result for the quasistatic frictional contact problem with normal compliance. In: Unilateral Problems in Structural Analysis Vol. 4, G.  Del Piero, F.  Maceri (eds.), Birkhäuser, Boston, 1991, pp. 85–111. MR 1169547
[20] D.  Motreanu, M.  Sofonea: Evolutionary variational inequalities arising in quasistatic frictional contact problems for elastic materials. Abstract Appl. Anal. 4 (1999), 255–279. DOI 10.1155/S1085337599000172 | MR 1813003
[21] J.  Nečas, I.  Hlaváček: Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction. Elsevier, Amsterdam, 1981.
[22] P. D.  Panagiotopoulos: Inequality Problems in Mechanics and Applications. Birkhäuser, Basel, 1985. MR 0896909 | Zbl 0579.73014
[23] M.  Raous, M.  Jean and J. J.  Moreau (eds.): Contact Mechanics. Plenum Press, New York, 1995.
[24] M.  Rochdi, M.  Shillor and M.  Sofonea: Quasistatic nonlinear viscoelastic contact with normal compliance and friction. J.  Elasticity 51 (1998), 105–126. DOI 10.1023/A:1007413119583 | MR 1664496
[25] M.  Rochdi, M.  Shillor and M.  Sofonea: A quasistatic contact problem with directional friction and damped response. Appl. Anal. 68 (1998), 409–422. DOI 10.1080/00036819808840639 | MR 1701715
[26] M.  Shillor (ed.): Recent Advances in Contact Mechanics. Math. Computer Model. 28 (1998), no. 4–8.
[27] M.  Shillor, M.  Sofonea: A quasistatic viscoelastic contact problem with friction. Internat. J.  Engrg. Sci. 38 (2000), 1517–1533. DOI 10.1016/S0020-7225(99)00126-3 | MR 1763038
[28] M.  Sofonea, M.  Shillor: Variational analysis of quasistatic viscoplastic contact problems with friction. Comm. Appl. Anal. 5 (2001), 135–151. MR 1844677
Partner of
EuDML logo