Previous |  Up |  Next


Lie groups; infinitesimal transformations; invariants; pricing of derivative securities; Bessel equations; Bessel functions
This paper proposes a Lie group analytical approach to tackle the problem of pricing derivative securities. By exploiting the infinitesimal symmetries of the Boundary Value Problem (BVP) satisfied by the price of a derivative security, our method provides an effective algorithm for obtaining its explicit solution.
[1] F. Black, M.  Scholes: The pricing of options and corporate liabilities. J.  Polit. Econ. 81 (1973), 637–654. DOI 10.1086/260062
[2] J. C. Cox, S. A. Ross: The valuation of options for alternative stochastic processes. J.  Fin. Econ. 3 (1976), 145–166. DOI 10.1016/0304-405X(76)90023-4
[3] D. Duffie, J.  Ma, and J.  Yong: Black’s consol rate conjecture. Ann. Appl. Prob. 5 (1995), 356–382. DOI 10.1214/aoap/1177004768 | MR 1336873
[4] N.  El Karoui, S. Peng, and M. C.  Quenez: Backward stochastic differential equations in finance. Math. Finance 7 (1997), 1–71. DOI 10.1111/1467-9965.00022 | MR 1434407
[5] W.  Feller: Two singular diffusion problems. Ann. Math. 54 (1951), 173–182. DOI 10.2307/1969318 | MR 0054814 | Zbl 0045.04901
[6] H.  Geman, M.  Yor: Bessel processes, Asian options, and perpetuities. Mathematical Finance 3 (1993), 349–375. DOI 10.1111/j.1467-9965.1993.tb00092.x
[7] H. U. Gerber, E. S. W. Shiu: Option pricing by Esscher transforms. Transactions of the Society of Actuaries XLVI (1994), 99–191.
[8] N. Kunitomo, M.  Ikeda: Pricing options with curved boundaries. Math. Finance 2 (1992), 275–298. DOI 10.1111/j.1467-9965.1992.tb00033.x
[9] C. F. Lo,P. H.  Yuen, and C. H.  Hui: Constant elasticity of variance option pricing model with time-dependent parameters. Int. J. Theor. Appl. Finance 3 (2000), 661–674. DOI 10.1142/S0219024900000814 | MR 1795483
[10] C. F. Lo, C. H. Hui: Valuation of financial derivatives with time-dependent parameters: Lie algebraic approach. Quant. Finance 1 (2001), 73–78. DOI 10.1080/713665552 | MR 1810017
[11] P. J. Olver: Applications of Lie Groups to Differential Equations. Springer-Verlag, New York, 1986. MR 0836734 | Zbl 0588.22001
[12] L. V. Ovsyannikov: Group Analysis of Differential Equations. Academic Press, New York, 1982. MR 0668703 | Zbl 0485.58002
[13] G. H. Watson: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge, 1922.
Partner of
EuDML logo