[2] L.  Baillet, T.  Sassi: 
Méthodes d’éléments finis avec hybridisation frontière pour les problèmes de contact avec frottement. C. R.  Acad. Sci. Paris, Ser. I 334 (2002), 917–922. 
DOI 10.1016/S1631-073X(02)02356-7 | 
MR 1909940[3] P.  Coorevits, P.  Hild, K.  Lhalouani, and T.  Sassi: 
Mixed finite element methods for unilateral problems: Convergence analysis and numerical studies. Math. Comput. 71 (2002), 1–25. 
DOI 10.1090/S0025-5718-01-01318-7 | 
MR 1862986[4] J. Daněk, I.  Hlaváček, and J.  Nedoma: 
Domain decomposition for generalized unilateral semi-coercive contact problem with friction in elasticity. Math. Comput. Simul. 68 (2005), 271–300. 
DOI 10.1016/j.matcom.2004.12.007 | 
MR 2138931[5] I.  Ekeland, R. Temam: 
Analyse Convexe et Problèmes Variationnels. Dunod, Paris, 1974. 
MR 0463993[6] M. Fiedler: 
Special Matrices and Their Applications in Numerical Mathematics. Martinus Nijhoff Publ. (member of Kluwer), Dordrecht-Boston, 1986. 
MR 1105955 | 
Zbl 0677.65019[7] M.  Frémond: Dual formulations for potentials and complementary energies. In: MAFELAP, J.  R. Whiteman (ed.), Academic Press, London, 1973.
[9] J.  Haslinger, I.  Hlaváček, and J.  Nečas: 
Numerical methods for unilateral problems in solid mechanics. In: Handbook of Numerical Analysis, vol. IV, P. G. Ciarlet, J.-L. Lions (eds.), North Holland, Amsterdam, 1996, pp. 313–485. 
MR 1422506[10] J.  Haslinger, T.  Sassi: 
Mixed finite element approximation of 3D  contact problems with given friction: error analysis and numerical realization. M2AN, Math. Model. Numer. Anal. 38 (2004), 563–578. 
DOI 10.1051/m2an:2004026 | 
MR 2075760[11] J. Haslinger, R.  Kučera, and Z.  Dostál: 
An algorithm for numerical realization of 3D  contact problems with Coulomb friction. J.  Comput. Appl. Math. 164–165 (2004), 387–408. 
MR 2056889[12] I.  Hlaváček, J.  Haslinger, J.  Nečas, and J. Lovíšek: 
Solution of Variational Inequalities in Mechanics. Springer-Verlag, New York, 1988. 
MR 0952855[15] V.  Janovský, P.  Procházka: 
Contact problem for two elastic bodies, Parts I–III. Apl. Mat. 25 (1980), 87–109, 110–136, 137–146. 
MR 0560325[16] J.  Nečas, I.  Hlaváček: 
Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction. Elsevier, Amsterdam, 1981. 
MR 0600655[17] T.  Sassi: 
Nonconforming mixed variational formulation of the Signorini problem with a given friction. Preprint of MAPLY No. 365, 2003. 
http://maply,univ-lyon1.fr/publis/.