Previous |  Up |  Next


fibre suspension flow; convection-diffusion equation; optimal control; sensitivity analysis; finite element method; automatic differentiation
We study a 2D model of the orientation distribution of fibres in a paper machine headbox. The goal is to control the orientation of fibres at the outlet by shape variations. The mathematical formulation leads to an optimization problem with control in coefficients of a linear convection-diffusion equation as the state problem. Existence of solutions both to the state and the optimization problem is analyzed and sensitivity analysis is performed. Further, discretization is done and a numerical example is shown.
[1] R.  Byrd, J. C.  Gilbert, and J.  Nocedal: A trust region method based on interior point techniques for nonlinear programming. Math. Program.  A 89 (2000), 149–185. DOI 10.1007/PL00011391 | MR 1795061
[2] J. W.  Demmel, S. C.  Eisenstat, J. R.  Gilbert, X. S.  Li, and J. W. H.  Liu: A supernodal approach to sparse partial pivoting. SIAM J.  Matrix Anal. Appl. 20 (1999), 720–755. DOI 10.1137/S0895479895291765 | MR 1685050
[3] D.  Gilbarg, N. S.  Trudinger: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 2001. MR 1814364
[4] A.  Griewank: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM, Philadelphia, 2000. MR 1753583 | Zbl 0958.65028
[5] J.  Hämäläinen: Mathematical Modelling and Simulation of Fluid Flows in Headbox of Paper Machines. University of Jyväskylä, Jyväskyä, 1993. MR 1218394
[6] J.  Hämäläinen, R. A. E.  Mäkinen, and P.  Tarvainen: Optimal design of paper machine headboxes. Int. J.  Numer. Methods Fluids 34 (2000), 685–700. DOI 10.1002/1097-0363(20001230)34:8<685::AID-FLD75>3.0.CO;2-O
[7] J.  Haslinger, R. A.  E.  Mäkinen: Introduction to Shape Optimization: Theory, Approximation, and Computation. SIAM, Philadelphia, 2003. MR 1969772
[8] J.  Haslinger, J.  Málek, and J.  Stebel: Shape optimization in problems governed by generalised Navier-Stokes Equations: Existence analysis. Control Cybern. 34 (2005), 283–303. MR 2211072
[9] M.  Křížek, P.  Neittaanmäki: Finite Element Approximation of Variational Problems and Applications. Longman Academic, Scientific & Technical, Harlow, 1990. MR 1066462
[10] O. A.  Ladyzhenskaya, N. N.  Ural’tseva: Linear and Quasilinear Elliptic Equations. Academic Press, New York-London, 1968.
[11] R.  A.  E.  Mäkinen, J.  Hämäläinen: Optimal control of a turbulent fibre suspension flowing in a planar contraction. Commun. Numer. Meth. Eng.; Published Online: 13  Dec  2005, DOI: 10.1002/cnm.833. MR 2235029
[12] A.  Olson, I.  Frigaard, C.  Chan, and J. P.  Hämäläinen: Modelling a turbulent fibre suspension flowing in a planar contraction: The one-dimensional headbox. Int. J. Multiphase Flow 30 (2004), 51–66. DOI 10.1016/j.ijmultiphaseflow.2003.10.006
Partner of
EuDML logo