Previous |  Up |  Next


quasigroup identity; loop; group
In a recent paper, those quasigroup identities involving at most three variables and of “length” six which force the quasigroup to be a loop or group have been enumerated by computer. We separate these identities into subsets according to what classes of loops they define and also provide humanly-comprehensible proofs for most of the computer-generated results.
[1] Belousov V.D.: Balanced identities in quasigroups. (in Russian), Mat. Sb. (N.S.) 70 (112) (1966), 55--97. MR 0202898 | Zbl 0199.05203
[2] Belousov V.D.: A theorem on balanced identities. (in Russian), Mat. Issled. 71 (1983), 22--24. MR 0699119 | Zbl 0544.20060
[3] Fiala N.C.: Short identities implying that a quasigroup is a loop or group. Quasigroups Related Systems 15 (2007), 263--271. MR 2383952
[4] Sade A.: Entropie demosienne de multigroupoïdes et de quasigroupes. Ann. Soc. Sci. Bruxelles, Sér. I, 73 (1959), 302--309. MR 0124255 | Zbl 0092.25804
[5] Taylor M.A.: A generalization of a theorem of Belousov. Bull. Lond. Math. Soc. 10 (1978), 285--286. DOI 10.1112/blms/10.3.285 | MR 0519910 | Zbl 0408.20056
Partner of
EuDML logo