Previous |  Up |  Next


state-feedback control problem
This paper deals with some state-feedback $H_2/H_\infty $ control problems for continuous time periodic systems. The derivation of the theoretical results underlying such problems has been presented in the first part of the paper. Here, the parametrization and optimization problems in $H_2$, $H_\infty $ and mixed $H_2/H_\infty $ are introduced and solved.
[1] Doyle J. C., Glover K., Khargonekaar P. P., Francis B. A.: State–space solutions to standard $H_2$ and $H_{\infty }$ control problems. IEEE Trans. Automat. Control 34 (1989), 831–846 DOI 10.1109/9.29425 | MR 1004301
[2] Mita T., Zhi L. Kang, Ohushi S.: Correction of the FI result in $H_\infty $ control and parametrization of $H_\infty $ state feedback controllers. IEEE Trans. Automat. Control 38 (1993), 343–347 DOI 10.1109/9.250489 | MR 1206827
[3] Colaneri P., Geromel J. C., Locatelli A.: Control Systems Design – A $H_2$ and $H_\infty $ Viewpoint. Academic Press, New York 1997
[4] Colaneri P.: Continuous–time periodic systems in $H_2$ and $H_{\infty }$ – Part I: Theoretical aspects. Kybernetika 36 (2000), 211–242 MR 1760025
[5] Bittanti S., Colaneri P., Nicolao G. De: The periodic Riccati equation. In: The Riccati Equation (S. Bittanti, A. J. Laub and J. C. Willems, eds.), Springer Verlag, Berlin 1990, pp. 127–162 MR 1132054
[6] Bittanti S.: Deterministic and stochastic linear periodic systems. In: Time Series and Linear Systems (S. Bittanti, ed.), Springer Verlag, Berlin 1986, pp. 141–182 MR 0897824
[7] Bolzern P., Colaneri P.: The periodic Lyapunov equation. SIAM J. Matrix Analysis and Application 4 (1988), 499–512 DOI 10.1137/0609041 | MR 0964664 | Zbl 0662.93050
Partner of
EuDML logo