Previous |  Up |  Next


polynomial controller; linear system; parameters design
By the use of flatness the problem of pole placement, which consists in imposing closed loop system dynamics can be related to tracking. Polynomial controllers for finite-dimensional linear systems can then be designed with very natural choices for high level parameters design. This design leads to a Bezout equation which is independent of the closed loop dynamics but depends only on the system model.
[1] Aström K. J., Bernardson B., Ringdhal A.: Solution using robust adaptive pole placement. In: Proc. European Control Conference (ECC’91), Grenoble 1991, pp. 1341–2346
[2] Aström K. J., Wittenmark B.: Computer Controlled Systems, Theory and Design. Prentice Hall, Englewood Cliffs, N.J. 1990
[3] Bitaud L., Fliess, M., Lévine J.: A flatness based control synthesis of linear systems and application to windshield wipers. In: Proc. European Control Conference (ECC’97), Bruxelles 1997
[4] Fliess M.: Sur des pensers nouveaux faisons des vers anciens. In: Proc. CIFA2000, Lille 2000, pp. 26–36
[5] Fliess M., Lévine J., Martin,, Ph., Rouchon P.: Sur les systèmes non linéaires différentiellement plats. C. R. Acad. Sci. Paris I-315 (1992), 619–624 MR 1181303 | Zbl 0776.93038
[6] Fliess M., Lévine J., Martin, Ph., Rouchon P.: Linéarisation par bouclage dyna- mique et transformées de Lie–Backlund. C. R. Acad. Sci. Paris I-317 (1993), 981–986 MR 1249373
[7] Fliess M., Lévine J., Martin, Ph., Rouchon P.: Flatness and defect of nonlinear systems: introductory theory and applications. Internat. J. Control 61 (1995), 6, 1327–1361 DOI 10.1080/00207179508921959 | MR 1613557
[8] Fliess M., Lévine J., Martin, Ph., Rouchon P.: A Lie–Bäcklund approach to equivalence and flatness of nonlinear system. IEEE Trans. Automat. Control 44 (1999), 922–937 DOI 10.1109/9.763209 | MR 1690537
[9] Fliess M., Mounier H.: Controllability and observability of linear delay systems: an algebraic approach. ESAIM: Control, Optimization and Calculus of Variations 3 (1998), 301–314 DOI 10.1051/cocv:1998111 | MR 1644427 | Zbl 0908.93013
[10] Fliess M., Sira-Ramirez, H., Marquez R.: Regulation of non minimum phase outputs: a flatness approach. In: Perspectives in Control Theory & Applications, Colloquim in Honor of I. D. Landau, Paris, Springer–Verlag, Berlin 1998
[11] Franklin G. F., Powell J. D., Workman M.: Digital Control of Dynamic Systems. Addison–Wesley, Reading 1998 Zbl 0697.93002
[12] Isidori A.: Nonlinear Control Systems. Springer–Verlag, Berlin 1989 Zbl 0931.93005
[13] Horowitz I. M.: Synthesis of Feedback Systems. Wiley, New York 1963 Zbl 0515.93023
[14] Kailath T.: Linear Systems. Prentice–Hall, Englewood Cliffs, N.J. 1980 MR 0569473 | Zbl 0870.93013
[15] Kučera V.: Analysis and Design of Discrete Linear Control Systems. Prentice Hall, Englewood Cliffs, N.J. 1991 MR 1182311 | Zbl 0762.93060
[16] Landau I. D.: Identification et Commande des Processus. Hermès, Paris 1993
[17] Landau I. D., Lozano R., M’Saad M.: Adaptive Control. Springer–Verlag, New York 1998 MR 1483072 | Zbl 1234.93002
[18] Lévine J., Lottin J., Ponsart J. C.: A nonlinear approach to the control of magnetic bearings. IEEE Trans. Control Systems Techn. 4 (1996), 5, 524–44 DOI 10.1109/87.531919
[19] Lévine J.: Are there new industrial perspectives in the control of mechanical systems? In: Advances in Control (P. M. Frank, ed.), Springer–Verlag, New York 1999, pp. 197–226
[20] Marquez R., Delaleau E., Fliess M.: Commande par PID généralisé d’un moteur électrique sans capteur mécanique. In: Proc. CIFA 2000, Lille 2000, pp. 453–458
[21] Nijmeijer H., Schaft, Van Der: Nonlinear Dynamical Control Systems. Springer–Verlag, Berlin 1990 MR 1047663 | Zbl 0701.93001
[22] Rotella F., Carrillo F. J.: Flatness based control of a turning process. In: Proc. CESA’98, Vol. 1, Hammamet 1998, pp. 397–402
[23] Rotella F., Carrillo F. J.: Flatness approach for the numerical control of a turning process. In: Proc. European Control Conference (ECC’99), Karlsruhe 1999
[24] Rotella F., Carrillo F. J., Ayadi M.: Digital flatness-based robust controller applied to a thermal process. In: IEEE–CCA, Mexico–City 2001, pp. 936–941
[25] Rothfuß R., Rudolph, J., Zeitz M.: Flatness based control of a nonlinear chemical reactor. Automatica 32 (1996), 10, 1433–1439 DOI 10.1016/0005-1098(96)00090-8 | MR 1420044 | Zbl 0865.93046
Partner of
EuDML logo