Previous |  Up |  Next


manifold; linear connection; metric; pseudo-Riemannian geometry
We discuss Riemannian metrics compatible with a linear connection that has regular curvature. Combining (mostly algebraic) methods and results of [4] and [5] we give an algorithm which allows to decide effectively existence of positive definite metrics compatible with a real analytic connection with regular curvature tensor on an analytic connected and simply connected manifold, and to construct the family of compatible metrics (determined up to a scalar multiple) in the affirmative case. We also breafly touch related problems concerning geodesic mappings and projective structures.
[1] Berger, M.: A Panoramic View of Riemannian Geometry. Springer, Berlin, Heidelberg, New York, 2003. MR 2002701 | Zbl 1038.53002
[2] Borel, A., Lichnerowicz, A.: Groupes d’holonomie des variétés riemanniennes. C. R. Acad. Sci. Paris 234 (1952), 1835–1837. MR 0048133 | Zbl 0046.39801
[3] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II. Wiley-Intersc. Publ., New York, Chichester, Brisbane, Toronto, Singapore, 1991.
[4] Kowalski, O.: On regular curvature structures. Math. Z. 125 (1972), 129–138. DOI 10.1007/BF01110924 | MR 0295250 | Zbl 0234.53024
[5] Kowalski, O.: Metrizability of affine connections on analytic manifolds. Note di Matematica 8 (1) (1988), 1–11. MR 1050506 | Zbl 0699.53038
[6] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78 (1996), 311–333. DOI 10.1007/BF02365193 | MR 1384327
[7] Mikeš, J., Kiosak, V., Vanžurová, A.: Geodesic mappings of manifolds with affine connection. Palacký University, Olomouc (2008). MR 2488821 | Zbl 1176.53004
[8] Schmidt, B. G.: Conditions on a connection to be a metric connection. Commun. Math. Phys. 29 (1973), 55–59. DOI 10.1007/BF01661152 | MR 0322726
[9] Vanžurová, A.: Metrization problem for linear connections and holonomy algebras. Arch. Math. (Brno) 44 (2008), 339–349. MR 2501581 | Zbl 1212.53021
[10] Vilimová, Z.: The problem of metrizability of linear connections. Master's thesis, 2004, (supervisor: O. Krupková).
Partner of
EuDML logo