Previous |  Up |  Next


MV-algebras; measures; Dieudonné theorem; convergence; regular maps
We obtain for measures on MV-algebras the classical theorem of Dieudonné related to convergent sequences of regular maps.
[1] G. Barbieri and H. Weber: Measures on clans and on MV-algebras. In: Handbook of Measure Theory, North-Holland, Amsterdam 2002, pp. 911–945. MR 1954632
[2] J. K. Brooks: On a theorem of Dieudonné. Adv. in Math. 36 (1980), 2, 165–168. MR 0574646 | Zbl 0441.28006
[3] D. Butnariu and E. P. Klement: Triangular norms and some applications to measure and game theory. In: Fuzzy Approach to Reasoning and Decision-Making (Bechyně, 1990), pp. 89–105; Theory Decis. Lib. Ser. D System Theory, Knowledge Engineering and Problem Solving, 8, Kluwer Academic Publishers, Dordrecht 1992. MR 1219750
[4] P. de Lucia and E. Pap: Cafiero approach to the Dieudonné type theorems. J. Math. Anal. Appl. 337 (2008), 2, 1151–1157. MR 2386364
[5] J. Dieudonné: Sur la convergence des suites de mesures de Radon (in French). Anais Acad. Brasil. Ci. 23 (1951), 21–38. MR 0042496
[6] A. Dvurečenskij and S. Pulmannová: New trends in quantum structures. (Mathematics and its Applications 516.) Kluwer Academic Publishers, Dordrecht; Ister Science, Bratislava 2000. MR 1861369
[7] O. Nikodým: Sur les suites convergentes de fonctions parfaitement additives d’ensemble abstrait (in French). Monatsh. Math. Phys. 40 (1933), 1, 427–432. MR 1550217
[8] H. Weber: On modular functions. Funct. Approx., Comment. Math. 24 (1996), 35–52. MR 1453447 | Zbl 0887.06011
Partner of
EuDML logo