Previous |  Up |  Next


reflection; free algebra; variety; algorithm
We present an algorithm for constructing the free algebra over a given finite partial algebra in the variety determined by a finite list of equations. The algorithm succeeds whenever the desired free algebra is finite.
[1] Burris S., Sankappanavar H.P.: A course in universal algebra. Graduate Texts in Mathematics, Springer, New York, 1981. MR 0648287 | Zbl 0478.08001
[2] Ježek J., Quackenbush R.W.: Directoids: Algebraic models of up-directed sets. Algebra Universalis 27 (1990), 49–69. DOI 10.1007/BF01190253 | MR 1025835
[3] McKenzie R.: On spectra, and the negative solution of the decision problem for identities having a finite non-trivial model. J. Symbolic Logic 40 (1975), 186-196. DOI 10.2307/2271899 | MR 0376323
[4] McKenzie R., McNulty G., Taylor W.: Algebras, lattices, varieties. Vol. I. Wadsworth & Brooks/Cole, Monterey, 1987. MR 0883644
Partner of
EuDML logo