Previous |  Up |  Next


Finsler manifold; Landsberg manifold; scalar flag curvature; sectional flag curvature; Cartan tensor
In this paper we study some rigidity properties for Finsler manifolds of sectional flag curvature. We prove that any Landsberg manifold of non-zero sectional flag curvature and any closed Finsler manifold of negative sectional flag curvature must be Riemannian.
[1] Akbar-Zadeh, H.: Sur les espaces de Finsler à courbures sectionnelles constantes. Acad. Roy. Belg. Bull. Cl. Sci. (6) 74 (1988), 281–322. MR 1052466 | Zbl 0686.53020
[2] Chen, B., Zhao, L. L.: Randers metrics of sectional flag curvature. Houston J. Math., to appear. MR 2610781
[3] Chen, X., Mo, X., Shen, Z.: On the flag curvature of Finsler metrics of scalar curvature. J. London Math. Soc. 68 (2003), 762–780. DOI 10.1112/S0024610703004599 | MR 2010010 | Zbl 1063.53078
[4] Chern, S. S.: Local equivalence and Euclidean connections in Finsler spaces. Sci. Rep. Nat. Tsing Hua Univ. Ser. A5 (1948), 95–121, or Selected Papers, II, 194-212, Springer 1989. MR 0031812 | Zbl 0200.00004
[5] Chern, S. S., Shen, Z.: Riemannian-Finsler geometry. World Sci., Singapore, 2005. MR 2169595
[6] Mo, X.: The flag curvature tensor on a closed Finsler spaces. Res. Math. 36 (1999), 149–159. DOI 10.1007/BF03322108 | MR 1706528
[7] Numata, S.: On Landsberg spaces of scalar curvature. J. Korean Math. Soc. 12 (1975), 97–100. MR 0402643 | Zbl 0314.53017
Partner of
EuDML logo