[1] Antoch, J., Hušková, M., Jarušková, D.: 
Off-line statistical process control. In: Multivariate Total Quality Control, Chapter 1 Physica-Verlag/Springer Heidelberg (2002), 1-86. 
MR 1886416 | 
Zbl 1039.62110 
[2] Antoch, J., Hušková, M.: 
Estimators of changes. Asymptotics, Nonparametrics, and Time Series Marcel Dekker Basel (1999), 533-577. 
MR 1724708 
[3] Barry, D., Hartigan, J.: 
A Bayesian analysis for change-point problems. J. Am. Stat. Assoc. 88 (1993), 309-319. 
MR 1212493 | 
Zbl 0775.62065 
[4] Carlin, B. P., Gelfand, A. E., Smith, A. F. M.: 
Hierarchical Bayesian analysis of change point problems. Appl. Stat. 41 (1992), 389-405. 
DOI 10.2307/2347570 
[5] Csörgő, M., Horváth, L.: 
Limit Theorems in Change-Point Analysis. J. Wiley & Sons New York (1997). 
MR 2743035 
[6] Gilks, W. R., Richardson, S., (eds.), D. J. Spiegelhalter: 
Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC London (1995). 
MR 1397966 
[9] Janžura, M., Nielsen, J.: Segmentation method and change-point problem. ROBUST'02 J. Antoch, G. Dohnal, J. Klaschka JČMF Praha 163-177 Czech.
[11] Legát, D.: MCMC methods. Master thesis Charles University Praha (2004), Czech.
[12] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., Teller, E.: 
Equations of state calculations by fast computing machines. J. Chem. Phys. 21 (1953), 1087-1092. 
DOI 10.1063/1.1699114 
[13] O'Hogan, A., Foster, J.: Kendall's Advanced Theory of Statistics, Bayesian Inference. Arnold London (1999).
[14] Robert, Ch. P., Casella, G.: 
Monte Carlo Statistical Methods, 2nd ed. Springer Heidelberg (2005). 
MR 2080278