[2] Borsi, I., Farina, A., Fasano, A., Primicerio, M.: 
Biomass growth in unsaturated porous media: hydraulic properties changes. Applied and industrial mathematics in Italy Ser. Adv. Math. Appl. Sci., Vol. 75 World Sci. Publ. Hackensack (2007), 196-207. 
DOI 10.1142/9789812709394_0018 | 
MR 2367572[3] Friedman, A.: 
Partial Differential Equations of Parabolic Type. Prentice-Hall Engelwood Cliffs (1964). 
MR 0181836 | 
Zbl 0144.34903[4] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N.: Linear and Quasi-linear Equations of Parabolic Type. Translation of Mathematical Monographs, Vol. 23. American Mathematical Society (AMS) Providence (1968).
[5] Maggi, F., Porporato, A.: 
Coupled moisture and microbial dynamics in unsaturated soils. Water Resour. Res. 43 (2007). 
DOI 10.1029/2006WR005367[6] Merz, W.: 
Global existence result of the Monod model. Adv. Math. Sci. Appl. 15 (2005), 709-726. 
MR 2198584[7] Miller, E. E., Miller, R. D.: 
Physical theory for capillary flow phenomena. J. Appl. Phys. 27 (1956), 324-332. 
DOI 10.1063/1.1722370[8] Rockhold, M. L., Yarwood, R. R., Niemet, M. R., Bottomley, P. J., Selker, J. S.: 
Considerations for modeling bacterial-induced changes in hydraulic properties of variably saturated porous media. Adv. Wat. Res. 25 (2002), 477-495. 
DOI 10.1016/S0309-1708(02)00023-4[9] Rockhold, M. L., Yarwood, R. R., Niemet, M. R., Bottomley, P. J., Selker, J. S.: 
Experimental observations and numerical modeling of coupled microbial and transport processes in variably saturated sand. Vadose Zone J. 4 (2005), 407-417. 
DOI 10.2136/vzj2004.0087