Previous |  Up |  Next


nonlinear and degenerating PDE system; global existence; uniqueness; long-time behavior of solutions; $\omega $-limit; phase transitions; thermoviscoelastic materials
This paper is devoted to the analysis of a one-dimensional model for phase transition phenomena in thermoviscoelastic materials. The corresponding parabolic-hyperbolic PDE system features a {\it strongly nonlinear} internal energy balance equation, governing the evolution of the absolute temperature $\vartheta $, an evolution equation for the phase change parameter $\chi $, including constraints on the phase variable, and a hyperbolic stress-strain relation for the displacement variable ${\bf u}$. The main novelty of the model is that the equations for $\chi $ and ${\bf u}$ are coupled in such a way as to take into account the fact that the properties of the viscous and of the elastic parts influence the phase transition phenomenon in different ways. However, this brings about an elliptic degeneracy in the equation for ${\bf u}$ which needs to be carefully handled. \endgraf First, we prove a global well-posedness result for the related initial-boundary value problem. Secondly, we address the long-time behavior of the solutions in a simplified situation. We prove that the $\omega $-limit set of the solution trajectories is nonempty, connected and compact in a suitable topology, and that its elements solve the steady state system associated with the evolution problem.
[1] Aizicovici, S., Feireisl, E.: Long-time stabilization of solutions to a phase-field model with memory. J. Evol. Equ. 1 (2001), 69-84. DOI 10.1007/PL00001365 | MR 1838321 | Zbl 0973.35037
[2] Baiocchi, C.: Sulle equazioni differenziali astratte lineari del primo e del secondo ordine negli spazi di Hilbert. Ann. Mat. Pura Appl., IV. Ser. 76 (1967), 233-304 Italian. MR 0223697 | Zbl 0153.17202
[3] Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing Leyden (1976). MR 0390843 | Zbl 0328.47035
[4] Bonetti, E., Bonfanti, G.: Existence and uniqueness of the solution to a 3D thermoviscoelastic system. Electron. J. Differ. Equ. (2003), Electronic. MR 1971116 | Zbl 1034.74022
[5] Bonetti, E., Bonfanti, G.: Asymptotic analysis for vanishing acceleration in a thermoviscoelastic system. Abstr. Appl. Anal. 2005 (2005), 105-120. DOI 10.1155/AAA.2005.105 | MR 2179438 | Zbl 1090.74019
[6] Bonetti, E., Bonfanti, G.: Well-posedness results for a model of damage in thermoviscoelastic materials. Ann. Inst. H. Poincaré Anal. Non Linéaire (2008), doi: 10.1016/j.anihpc.2007.05.009. MR 2466326 | Zbl 1152.35505
[7] Bonetti, E., Schimperna, G.: Local existence to Frémond's model for damaging in elastic materials. Contin. Mech. Thermodyn. 16 (2004), 319-335. DOI 10.1007/s00161-003-0152-2 | MR 2061321
[8] Bonetti, E., Schimperna, G., Segatti, A.: On a doubly nonlinear model for the evolution of damaging in viscoelastic materials. J. Differ. Equations 218 (2005), 91-116. DOI 10.1016/j.jde.2005.04.015 | MR 2174968 | Zbl 1078.74048
[9] Bonfanti, G., Frémond, M., Luterotti, F.: Global solution to a nonlinear system for irreversible phase changes. Adv. Math. Sci. Appl. 10 (2000), 1-24. MR 1769184
[10] Brezis, H.: Opérateurs maximaux monotones et sémi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, No. 5 North-Holland, Elsevier Amsterdam-London, New York (1973), French. MR 0348562 | Zbl 0252.47055
[11] Colli, P., Laurençot, P.: Weak solutions to the Penrose-Fife phase field model for a class of admissible heat flux laws. Physica D 111 (1998), 311-334. DOI 10.1016/S0167-2789(97)80018-8 | MR 1601442
[12] Feireisl, E., Schimperna, G.: Large time behaviour of solutions to Penrose-Fife phase change models. Math. Methods Appl. Sci. 28 (2005), 2117-2132. DOI 10.1002/mma.659 | MR 2176909 | Zbl 1079.35021
[13] Feireisl, E., Simondon, F.: Convergence for semilinear degenerate parabolic equations in several space dimensions. J. Dyn. Differ. Equations 12 (2000), 647-673. DOI 10.1023/A:1026467729263 | MR 1800136 | Zbl 0977.35069
[14] Frémond, M.: Non-smooth Thermomechanics. Springer Berlin (2002). MR 1885252 | Zbl 0990.80001
[15] Frémond, M.: Phase change in mechanics. Lecture notes of XXX Scuola estiva di Fisica Matematica, Ravello, 2005. (to appear).
[16] Germain, P.: Cours de mécanique des milieux continus. Tome I: Théorie générale. Masson Paris (1973), French. MR 0368541 | Zbl 0254.73001
[17] Grasselli, M., Petzeltová, H., Schimperna, G.: Long time behavior of solutions to the Caginalp system with singular potential. Z. Anal. Anwend. 25 (2006), 51-72. DOI 10.4171/ZAA/1277 | MR 2216881 | Zbl 1128.35021
[18] Horn, W., Sprekels, J., Zheng, S.: Global existence of smooth solutions to the Penrose-Fife model for Ising ferromagnets. Adv. Math. Sci. Appl. 6 (1996), 227-241. MR 1385769 | Zbl 0858.35053
[19] Krejčí, P., Rocca, E., Sprekels, J.: Nonlocal temperature-dependent phase-field models for non-isothermal phase transitions. J. London Math. Soc. 76 (2007), 197-210. DOI 10.1112/jlms/jdm032 | MR 2351617
[20] Krejčí, P., Sprekels, J., Stefanelli, U.: Phase-field models with hysteresis in one-dimensional thermoviscoplasticity. SIAM J. Math. Anal. 34 (2002), 409-434. DOI 10.1137/S0036141001387604 | MR 1951781 | Zbl 1034.34053
[21] Krejčí, P., Sprekels, J., Stefanelli, U.: One-dimensional thermo-viscoplastic processes with hysteresis and phase transitions. Adv. Math. Sci. Appl. 13 (2003), 695-712. MR 2029939 | Zbl 1049.74036
[22] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars Paris (1969), French. MR 0259693 | Zbl 0189.40603
[23] Luterotti, F., Stefanelli, U.: Existence result for the one-dimensional full model of phase transitions. Z. Anal. Anwend. 21 (2002), 335-350. DOI 10.4171/ZAA/1081 | MR 1915265 | Zbl 1003.80003
[24] Miranville, A., Zelik, S.: Robust exponential attractors for Cahn-Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27 (2004), 545-582. DOI 10.1002/mma.464 | MR 2041814 | Zbl 1050.35113
[25] Nirenberg, L.: On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 123 (1959), 115-162. MR 0109940 | Zbl 0088.07601
[26] Rocca, E., Rossi, R.: Analysis of a nonlinear degenerating PDE system for phase transitions in thermoviscoelastic materials. J. Differ. Equations (2008), doi: 10.1016/j.jde.2008.02.006. MR 2460027 | Zbl 1151.74029
[27] Simon, J.: Compact sets in the space {$L^p(0,T;B)$}. Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65-96. MR 0916688
[28] Simon, L.: Asymptotics for a class of non-linear evolution equations, with applications to geometric problems. Ann. Math. 118 (1983), 525-571. DOI 10.2307/2006981 | MR 0727703 | Zbl 0549.35071
[29] Stefanelli, U.: Models of phase change with microscopic movements. PhD. Thesis University of Pavia (2003).
Partner of
EuDML logo