[1] Andreev, A. B., Lazarov, R. D., Racheva, M. R.: 
Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems. J. Comput. Appl. Math. 182 (2005), 333-349. 
DOI 10.1016/j.cam.2004.12.015 | 
MR 2147872 | 
Zbl 1075.65136[3] Babuška, I., Osborn, J.: 
Eigenvalue problems. In: Handbook of Numerical Analysis, Vol. II. Finite Element Methods (Part 1) J.-L. Lions, P. G. Ciarlet North-Holland Amsterdam (1991), 641-787. 
DOI 10.1016/S1570-8659(05)80042-0 | 
MR 1115240[4] Bacuta, C., Bramble, J. H.: 
Regularity estimates for the solutions of the equations of linear elasticity in convex plane polygonal domain. Z. Angew. Math. Phys. (Special issue dedicated to Lawrence E. Payne) 54 (2003), 874-878. 
DOI 10.1007/s00033-003-3211-4 | 
MR 2019187[5] Bacuta, C., Bramble, J. H., Pasciak, J. E.: 
Shift theorems for the biharmonic Dirichlet problem. In: Recent Progress in Computational and Appl. PDEs. Proceedings of the International Symposium on Computational and Applied PDEs, Zhangiajie, China, July 1-7, 2001 Kluwer Academic/Plenum Publishers New York (2001). 
MR 2039554[8] Brenner, S. C., Scott, R. L.: 
The Mathematical Theory of Finite Element Methods. Springer New York (1994). 
MR 1278258 | 
Zbl 0804.65101[9] Brezzi, F., Fortin, M.: 
Mixed and Hybrid Finite Element Methods. Springer New York (1991). 
MR 1115205 | 
Zbl 0788.73002[10] Chatelin, F.: 
Spectral Approximation of Linear Operators. Academic Press New York (1983). 
MR 0716134 | 
Zbl 0517.65036[12] Ciarlet, P. G.: 
The Finite Element Method for Elliptic Problem. North-Holland Amsterdam (1978). 
MR 0520174[13] Fabes, E. B., Kenig, C. E., Verchota, G. C.: 
The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57 (1998), 769-793. 
MR 0975121[14] Girault, V., Raviart, P.: 
Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer Berlin (1986). 
MR 0851383 | 
Zbl 0585.65077[15] Grisvard, P.: Singularities in Boundary Problems. Masson and Springer Paris (1985).
[18] Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement. China Sci. Tech. Press Beijing (2005).
[19] Lin, Q., Lü, T.: 
Asymptotic expansions for finite element eigenvalues and finite element solution. Bonn. Math. Schr. 158 (1984), 1-10. 
MR 0793412[20] Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Element Methods. Hebei University Publishers Baoding (1995).
[22] Osborn, J.: 
Approximation of the eigenvalue of a nonselfadjoint operator arising in the study of the stability of stationary solutions of the Navier-Stokes equations. SIAM J. Numer. Anal. 13 (1976), 185-197. 
DOI 10.1137/0713019 | 
MR 0447842 | 
Zbl 0334.76010