Previous |  Up |  Next


inverse problem; global superconvergence; finite element method
In this article we transform a large class of parabolic inverse problems into a nonclassical parabolic equation whose coefficients consist of trace type functionals of the solution and its derivatives subject to some initial and boundary conditions. For this nonclassical problem, we study finite element methods and present an immediate analysis for global superconvergence for these problems, on basis of which we obtain a posteriori error estimators.
[1] Alvarez, C., Conca, C., Friz, L., Kavian, O., Ortega, J. H.: Identification of immersed obstacles via boundary measurements. Inverse Probl. 21 (2005), 1531-1552. MR 2173409 | Zbl 1088.35080
[2] Azari, H., Allegretto, W., Lin, Y., Zhang, S.: Numerical procedures for recovering a time dependent coefficient in a parabolic differential equation. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 11 (2004), 181-199. MR 2049776 | Zbl 1055.35132
[3] Azari, H., Li, Ch., Nie, Y., Zhang, S.: Determination of an unknown coefficient in a parabolic inverse problem. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 11 (2004), 665-674. MR 2077110 | Zbl 1059.35161
[4] Azari, H., Zhang, S.: Identifying a time dependent unknown coefficient in a parabolic inverse problem. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms. Suppl. 12b (2005), 32-43. MR 2269155
[5] Cannon, J. R., Yin, H.-M.: A class of nonlinear non-classical parabolic equations. J. Differ. Equations 79 (1989), 266-288. DOI 10.1016/0022-0396(89)90103-4 | MR 1000690 | Zbl 0702.35120
[6] Cannon, J. R., Yin, H.-M.: Numerical solutions of some parabolic inverse problems. Numer. Methods Partial Differ. Equations 6 (1990), 177-191. DOI 10.1002/num.1690060207 | MR 1051841 | Zbl 0709.65105
[7] Canuto, B., Kavian, O.: Determining coefficients in a class of heat equations via boundary measurements. SIAM J. Math. Anal. 32 (2001), 963-986 (electronic). DOI 10.1137/S003614109936525X | MR 1828313 | Zbl 0981.35096
[8] J. Douglas, Jr., B. F. Jones, Jr.: The determination of a coefficient in a parabolic differential equation. II. Numerical approximation. J. Math. Mech. 11 (1962), 919-926. MR 0153988 | Zbl 0112.32603
[9] B. F. Jones, Jr.: The determination of a coefficient in a parabolic differential equation. I. Existence and uniqueness. J. Math. Mech. 11 (1962), 907-918. MR 0153987 | Zbl 0112.32602
[10] Keung, Y. L., Zou, J.: Numerical identification of parameters in parabolic systems. Inverse Probl. 14 (1998), 83-100. MR 1607632 | Zbl 0894.35127
[11] Khachfe, R. A., Jarny, Y.: Numerical solution of 2-D nonlinear inverse heat conduction problems using finite-element techniques. Numer. Heat Transfer, Part B: Fundamentals 37 (2000), 45-67. DOI 10.1080/104077900275549
[12] Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Element Methods. Hebei University Publishers Baoding (1996), Chinese.
[13] Lin, Q., Zhu, Q.: The Preprocessing and Postprocessing for the Finite Element Method. Shanghai Scientific & Technical Publishers Shanghai (1994), Chinese.
[14] Prilepko, A. I., Orlovskii, D. G.: Determination of the parameter of an evolution equation and inverse problems of mathematical physics I. Differ. Equations 21 (1985), 96-104. MR 0777788
[15] Ramm, A. G.: An inverse problem for the heat equation. J. Math. Anal. Appl. 264 (2001), 691-697. DOI 10.1006/jmaa.2001.7781 | MR 1876759 | Zbl 0987.35164
[16] Ramm, A. G.: A non-overdetermined inverse problem of finding the potential from the spectral function. Int. J. Differ. Equ. Appl. 3 (2001), 15-29. MR 1852465 | Zbl 1048.35137
[17] Ramm, A. G.: Inverse problems for parabolic equations applications. Aust. J. Math. Anal. Appl. 2 (2005), Art. 10 (electronic). MR 2174516 | Zbl 1162.35384
[18] Ramm, A. G., Koshkin, S. V.: An inverse problem for an abstract evolution equation. Appl. Anal. 79 (2001), 475-482. DOI 10.1080/00036810108840973 | MR 1880954 | Zbl 1020.35120
[19] Xiong, X. T., Fu, C. L., Li, H. F.: Central difference schemes in time and error estimate on a non-standard inverse heat conduction problem. Appl. Math. Comput. 157 (2004), 77-91. DOI 10.1016/j.amc.2003.08.028 | MR 2085525 | Zbl 1068.65117
Partner of
EuDML logo