Previous |  Up |  Next


quasistatic process; electro-viscoelastic materials; bilateral contact; friction; damage; existence and uniqueness; monotone operator; fixed point; weak solution
We consider a quasistatic contact problem for an electro-viscoelastic body. The contact is frictional and bilateral with a moving rigid foundation which results in the wear of the contacting surface. The damage of the material caused by elastic deformation is taken into account, its evolution is described by an inclusion of parabolic type. We present a weak formulation for the model and establish existence and uniqueness results. The proofs are based on classical results for elliptic variational inequalities, parabolic inequalities and fixed point arguments.
[1] Barbu, V.: Optimal Control of Variational Inequalities. Pitman Boston (1984). MR 0742624 | Zbl 0574.49005
[2] Batra, R. C., Yang, J. S.: Saint Venant's principle in linear piezoelectricity. J. Elasticity 38 (1995), 209-218. DOI 10.1007/BF00042498 | MR 1336038 | Zbl 0828.73061
[3] Bisenga, P., Lebon, F., Maceri, F.: The unilateral frictional contact of a piezoelectric body with a rigid support. In: Contact Mechanics J. A. C. Martins, M. D. P. Monteiro Marques Kluwer Dordrecht (2002), 347-354. MR 1968676
[4] Brézis, H.: Equations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier 18 (1968), 115-175 French. DOI 10.5802/aif.280 | MR 0270222
[5] Dalah, M., Sofonea, M.: Antiplane frictional contact of electro-viscoelasticity cylinders. Electron. J. Differ. Equ. 2007 (2007).
[6] Duvaut, G., Lions, J.-L.: Les inéquations en mécanique et en physique. Springer Berlin (1976), French.
[7] Frémond, M., Nedjar, B.: Damage in concrete: The unilateral phenomenon. Nuclear Engng. Design 156 (1995), 323-335. DOI 10.1016/0029-5493(94)00970-A
[8] Frémond, M., Nedjar, B.: Damage, gradient of damage and principle of virtual power. Int. J. Solids Struct. 33 (1996), 1083-1103. DOI 10.1016/0020-7683(95)00074-7 | MR 1370124
[9] Frémond, M., Kuttler, Kl., Nedjar, B., Shillor, M.: One-dimensional models of damage. Adv. Math. Sci. Appl. 8 (1998), 541-570. MR 1657215
[10] Ikeda, T.: Fundamentals of Piezoelectricity. Oxford University Press Oxford (1990).
[11] Lerguet, Z., Shillor, M., Sofonea, M.: A frictional contact problem for an electro-viscoelastic body. Electron. J. Differ. Equ. 2007 (2007). Zbl 1139.74041
[12] Maceri, F., Bisenga, P.: The unilateral frictionless contact of piezoelectric body with a rigid support. Math. Comput. Modelling 28 (1998), 19-28. DOI 10.1016/S0895-7177(98)00105-8
[13] Nečas, J., Hlaváček, I.: Mathematical Theory of Elastic and Elasto-plastic Bodies: An Introduction. Elsevier Amsterdam (1981). MR 0600655
[14] Sofonea, M., Arhab, R.: An electro-viscoelastic contact problem with adhesion. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 14 (2007), 577-991. MR 2325813 | Zbl 1139.74042
[15] Sofonea, M., Essoufi, El H.: Quasistatic frictional contact of viscoelastic piezoelectric body. Adv. Math. Sci. Appl. 14 (2004), 613-631. MR 2111832
[16] Sofonea, M., Essoufi, El-H.: A piezoelectric contact problem with slip-dependent coefficient of friction. Math. Model. Anal. 9 (2004), 229-242. MR 2099952 | Zbl 1092.74029
[17] Sofonea, M., Han, W., Shillor, M.: Analysis and Approximation of Contact Problems with Adhesion or Damage. Pure and Applied Mathematics 276. Chapman&Hall/CRC Boca Raton (2006). MR 2183435
[18] Strömberg, N.: Continuum Thermodynamics of Contact, Friction and Wear. Thesis No. 491. Department of Mechanical Engineering, Linköping Institute of Technology Linköping (1995).
[19] Strömberg, N., Johansson, L., Klarbring, A.: Derivation and analysis of a generalized standard model for contact, friction and wear. Int. J. Solids Struct. 33 (1996), 1817-1836. DOI 10.1016/0020-7683(95)00140-9 | MR 1392130
Partner of
EuDML logo