Previous |  Up |  Next


Vietoris hyperspace; continuous selection; function space; weakly orderable space
It is proved that for a zero-dimensional space $X$, the function space $C_p(X,2)$ has a Vietoris continuous selection for its hyperspace of at most 2-point sets if and only if $X$ is separable. This provides the complete affirmative solution to a question posed by Tamariz-Mascarúa. It is also obtained that for a strongly zero-dimensional metrizable space $E$, the function space $C_p(X,E)$ is weakly orderable if and only if its hyperspace of at most 2-point sets has a Vietoris continuous selection. This provides a partial positive answer to a question posed by van Mill and Wattel.
[1] García-Ferreira, S., Gutev, V., Nogura, T.: Extensions of 2-point selections. New Zealand J. Math. 38 (2008), 1-8. MR 2491681
[2] Gutev, V.: Weak orderability of second countable spaces. Fund. Math. 196 (2007), 275-287. DOI 10.4064/fm196-3-4 | MR 2353859 | Zbl 1129.54016
[3] Gutev, V., Nogura, T.: Selections and order-like relations. Appl. Gen. Topol. 2 (2001), 205-218. MR 1890037 | Zbl 0993.54019
[4] Gutev, V., Nogura, T.: Vietoris continuous selections and disconnectedness-like properties. Proc. Amer. Math. Soc. 129 (2001), 2809-2815. DOI 10.1090/S0002-9939-01-05883-X | MR 1838807 | Zbl 0973.54021
[5] Gutev, V., Nogura, T.: Selection problems for hyperspaces. Open Problems in Topology 2 (Elliott Pearl, ed.), Elsevier BV, Amsterdam (2007), 161-170. MR 2367385
[6] Hrušák, M., Martínez-Ruiz, I.: Selections and weak orderability. Fund. Math. 203 (2009), 1-20. DOI 10.4064/fm203-1-1 | MR 2491778
[7] Michael, E.: Topologies on spaces of subsets. Trans. Amer. Math. Soc. 71 (1951), 152-182. DOI 10.1090/S0002-9947-1951-0042109-4 | MR 0042109 | Zbl 0043.37902
[8] Mill, J. {van}, Wattel, E.: Selections and orderability. Proc. Amer. Math. Soc. 83 (1981), 601-605. DOI 10.1090/S0002-9939-1981-0627702-4 | MR 0627702
[9] Tamariz-Mascar{'u}a, A.: Continuous selections on spaces of continuous functions. Comment. Math. Univ. Carolin. 47 (2006), 641-660. MR 2337419
Partner of
EuDML logo