[1] Archdeacon, D., Ellis-Monaghan, J., Fisher, D., Froncek, D., Lam, P. C. B., Seager, S., Wei, B., Yuster, R.: 
Some remarks on domination. J. Graph Theory 46 (2004), 207-210. 
DOI 10.1002/jgt.20000 | 
MR 2063370 | 
Zbl 1041.05057[3] Dunbar, J. E., Hedetniemi, S. T., Henning, M. A., Slater, P. J.: 
Signed domination number of a graph. In: Graph Theory, Combinatorics, and Applications, John Wiley & Sons (1995), 311-322. 
MR 1405819[4] Fallat, S. M., Kirkland, S., Pati, S.: 
On graphs with algebraic connectivity equal to minimum edge density. Linear Algebra Appl. 373 (2003), 31-50. 
MR 2022276 | 
Zbl 1026.05075[5] Feng, L., Yu, G., Li, Q.: 
Minimizing the Laplacian eigenvalues for trees with given domination number. Linear Algebra Appl. 419 (2006), 648-655. 
MR 2277995 | 
Zbl 1110.05060[8] Haynes, T. W., Hedetniemi, S. T., Slater, P. J.: 
Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998). 
MR 1605684 | 
Zbl 0890.05002[11] Lu, M., Liu, H., Tian, F.: 
Bounds of Laplacian spectrum of graphs based on the domination number. Linear Algebra Appl. 402 (2005), 390-396. 
MR 2141097 | 
Zbl 1063.05095[12] Merris, R.: 
Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197/198 (1998), 143-176. 
MR 1275613[13] Nikiforov, V.: 
Bounds on graph eigenvalues I. Linear Algebra Appl. 420 (2007), 667-671. 
MR 2278241 | 
Zbl 1109.05073