Previous |  Up |  Next


finite group ring; BN-pair; authentication code
In this paper, we determine all the normal forms of Hermitian matrices over finite group rings $R=F_{q^2}G$, where $q=p^{\alpha }$, $G$ is a commutative $p$-group with order $p^{\beta }$. Furthermore, using the normal forms of Hermitian matrices, we study the structure of unitary group over $R$ through investigating its BN-pair and order. As an application, we construct a Cartesian authentication code and compute its size parameters.
[1] Brown, K. S.: Buildings. Springer-Verlag New York (1989). MR 0969123 | Zbl 0715.20017
[2] Gao, Y.: Computation of the orders of unitary groups over finite local rings. Acta Math. Scientia 25A (2005), 564-568 Chinese. MR 2175620 | Zbl 1101.20305
[3] Karpilovsky, G.: Commutative Group Algebra. Marcel Dekker New York (1983). MR 0704185
[4] Wan, Z. X.: Further construction of Cartesian authentication codes from unitary geometry. Designs, Codes and Cryptology 2 (1992), 333-356. DOI 10.1007/BF00125202 | MR 1194775
[5] Wan, Z. X.: Geometry of Classical Groups over Finite Fields. Studentlitteratur Lund (1993). MR 1254440 | Zbl 0817.51001
[6] You, H.: Sylow subgroups of classical groups over finite commutative rings. Acta Math. Sinica 39 (1996), 33-40 Chinese. MR 1412901 | Zbl 0863.20020
[7] You, H., Nan, J. Z.: Using normal form of matrices over finite fields to construct Cartesian authentication codes. J. Math. Res. Exposition 18 (1998), 341-346. MR 1645903 | Zbl 0953.94024
[8] You, H.: Overgroups of symplectic group in linear group over commutative rings. J. Algebra 282 (2004), 23-32. DOI 10.1016/j.jalgebra.2004.07.036 | MR 2095570 | Zbl 1067.20065
Partner of
EuDML logo