Previous |  Up |  Next


interpolating sequence; Carleson's theorem; uniformly separated; Blaschke product; Lipschitz class
This paper deals with an interpolation problem in the open unit disc $\mathbb D$ of the complex plane. We characterize the sequences in a Stolz angle of $\mathbb D $, verifying that the bounded sequences are interpolated on them by a certain class of not bounded holomorphic functions on $\mathbb D $, but very close to the bounded ones. We prove that these interpolating sequences are also uniformly separated, as in the case of the interpolation by bounded holomorphic functions.
[1] Attele, K. R. M.: Interpolating sequences for the derivatives of Bloch functions. Glasgow Math. J. 34 (1992), 35-41. DOI 10.1017/S0017089500008521 | MR 1145630 | Zbl 0751.30032
[2] Carleson, L.: An interpolation problem for bounded analytic functions. Amer. J. Math. 80 (1958), 921-930. DOI 10.2307/2372840 | MR 0117349 | Zbl 0085.06504
[3] Kotochigov, A. M.: Free interpolation in the spaces of analytic functions with derivative of order s from the Hardy space. J. Math. Sci. (N.Y.) 129 (2005), 4022-4039. DOI 10.1007/s10958-005-0339-0 | MR 2037538 | Zbl 1151.30339
[4] Kronstadt, E. P.: Interpolating sequences for functions satisfying a Lipschitz condition. Pacific J. Math. 63 (1976), 169-177. DOI 10.2140/pjm.1976.63.169 | MR 0412431 | Zbl 0306.30030
Partner of
EuDML logo