Previous |  Up |  Next


Linear error propagation law; bias; nonlinear function
Linear error propagation law (LEPL) has been using frequently also for nonlinear functions. It can be adequate for an actual situation however it need not be so. It is useful to use some rule in order to recognize whether LEPL is admissible. The aim of the paper is to find such rule.
[1] Bates, D. M., Watts, D. G.: Relative curvature measures of nonlinearity. J. Roy. Stat. Soc. B 42 (1980), 1–25. MR 0567196 | Zbl 0455.62028
[2] Kubáčková, L.: Foundations of Estimation Theory. Elsevier, Amsterdam–Oxford–New York–Tokyo, 1988.
[3] Kubáček, L.: Nonlinear error propagation law. Applications of Mathematics 41 (1996), 329–345. MR 1404545
[4] Kubáček, L., Tesaříková, E.: Weakly Nonlinear Regression Models. Vyd. Univerzity Palackého, Olomouc, 2008.
[5] Rao, C. R., Mitra, S. K.: Generalized Inverse of Matrices and its Applications. Wiley, New York–London–Sydney–Toronto, 1971. MR 0338013 | Zbl 0236.15005
[6] Scheffé, H.: The Analysis of Variance. Wiley, New York–London–Sydney, 1967, (fifth printing). MR 1673563
[7] Tesaříková, E., Kubáček, L.: Linear error propagation law and nonlinear function. Department of algebra and geometry, Faculty of Science, Palacký University, Olomouc, 2010, (demoprogram). MR 2796948
Partner of
EuDML logo