Previous |  Up |  Next


weighted Besov spaces; unit ball; projection
The $\omega$-weighted Besov spaces of holomorphic functions on the unit ball $B^n$ in $C^n$ are introduced as follows. Given a function $\omega $ of regular variation and $0< p< \infty $, a function $f$ holomorphic in $B^n$ is said to belong to the Besov space $B_p(\omega)$ if $$ \Vert f\Vert^p_{B_p(\omega )}=\int_{B^n} (1-|z|^2)^p|Df(z)|^p \frac{\omega(1-|z|)}{(1-|z|^2)^{n+1}}\,d\nu(z)< +\infty , $$ where $d\nu (z)$ is the volume measure on $B^n$ and $D$ stands for the fractional derivative of $f$. The holomorphic Besov space is described in the terms of the corresponding $L_p(\omega )$ space. Some projection theorems and theorems on existence of the inversions of these projections are proved. Also, explicit descriptions of the duals of the considered Besov spaces are given.
[1] Arazy J., Fisher S., Peetre J.: Mobius invariant function spaces. J. Reine Angew. Math. 363 (1985), 110–145. MR 0814017
[2] Blasco O.: Multipliers on weighted Besov spaces of analytic functions. Contemp. Math. 144 (1993), 23–33. DOI 10.1090/conm/144/1209444 | MR 1209444 | Zbl 0838.42002
[3] Djrbashian A., Shamoyan F.: Topics in the Theory of $A^p_{\alpha }$ spaces. Teubner Texts in Math., 105, Teubner, Leipzig, 1988. MR 1021691 | Zbl 0667.30032
[4] Harutyunyan A., Lusky W.: Holomorphic Bloch space on the unit ball in $C^n$. Comment. Math. Univ. Carolin. 50 (2009), no. 4, 549–562. MR 2583132
[5] Harutyunyan A., Lusky W.: $\omega-$ weighted holomorphic Besov spaces on polydiscs. J. Funct. Spaces Appl.(to appear). MR 2796723
[6] Harutyunyan A., Lusky W.: Duals of holomorphic Besov spaces on the polydiscs and diagonal mappings. J. Contemp. Math. Anal. 45 (2010), no. 3, 128–135. DOI 10.3103/S1068362310030027 | MR 2760596
[7] Harutyunyan A.V.: Bloch spaces of holomorphic functions in the polydisc. J. Funct. Spaces Appl. 5 (2007), no. 3, 213–230. DOI 10.1155/2007/353959 | MR 2352842
[8] Karapetyants A.N., Kodzoeva F.D.: Analytic weigthed Besov spaces on the unit disc. Proc. A. Razmadze Math.Inst. 139 (2005), 125–127. MR 2202885
[9] Nowak M.: Bloch and Möbius invariant Besov spaces on the unit ball of $\mathbb C^n$. Complex Variables Theory Appl. 44 (2001), 1–12. DOI 10.1080/17476930108815339 | MR 1826712
[10] Li S., Stevic S.: Some characterizations of the Besov space and the $\alpha $-Bloch space. J. Math. Anal. Appl. 346 (2008), 262–273. DOI 10.1016/j.jmaa.2008.05.044 | MR 2428290 | Zbl 1156.32002
[11] Li S., Wulan H.: Besov space on the unit ball of $\mathbb C^n$. Indian J. Math. 48 (2006), no. 2, 177–186. MR 2251898
[12] Rudin W.: Function Theory in Unit Ball of $C^n$. Springer, New York-Berlin, 1980. MR 0601594
[13] Seneta E.: Functions of Regular Variation. (Russian), Nauka, Moscow, 1985.
[14] Stroethoff K.: Besov type characterisations for the Bloch space. Bull. Australian Math. Soc. 39 (1989), 405–420. DOI 10.1017/S0004972700003324 | MR 0995138
[15] Zhu K.: Spaces of Holomorphic Functions in the Unit Ball. Graduatre Texts in Mathematics, 226, Springer, New York, 2005. MR 2115155 | Zbl 1067.32005
Partner of
EuDML logo