# Article

Full entry | PDF   (0.2 MB)
Keywords:
system of third order nonlinear neutral delay differential equations; contraction mapping; completely continuous mapping; condensing mapping; uncountably many bounded positive solutions
Summary:
In this paper, we aim to study the global solvability of the following system of third order nonlinear neutral delay differential equations \aligned & \frac{d}{dt}\Big\{r_i(t)\frac{d}{dt}\Big[\lambda_i(t)\frac{d}{dt} \Big(x_i(t)-f_i(t,x_1(t-\sigma_{i1}),x_2(t-\sigma_{i2}), x_3(t-\sigma_{i3}))\Big)\Big]\Big\} \cr & \qquad \quad + \frac{d}{dt}\Big[r_i(t)\frac{d}{dt}g_i(t,x_1(p_{i1}(t)), x_2(p_{i2}(t)),x_3(p_{i3}(t)))\Big] \cr & \qquad \quad + \frac{d}{dt}h_i(t,x_1(q_{i1}(t)),x_2(q_{i2}(t)), x_3(q_{i3}(t))) \cr & = l_i(t,x_1(\eta_{i1}(t)),x_2(\eta_{i2}(t)),x_3(\eta_{i3}(t))), \quad t\ge t_0,\quad i\in \{1,2,3\} \endaligned in the following bounded closed and convex set \aligned \Omega(a,b)=\Big\{x(t)=\big(x_1(t),x_2(t),x_3(t)\big)\in C([t_0,+\infty),\Bbb{R}^3):a(t)\le x_i(t)\le b(t), \qquad \forall\, t\geq t_0, i\in\{1,2,3\}\Big\}, \qquad \endaligned where $\sigma_{ij}>0$, $r_i,\lambda_i,a,b\in C([t_0,+\infty),\Bbb{R}^{+})$, $f_i,g_i,h_i,l_i\in C([t_0,+\infty)\times\Bbb{R}^3,\Bbb{R})$, \newline $p_{ij},q_{ij},\eta_{ij}\in C([t_0,+\infty),\Bbb{R})$ for $i,j\in\{1,2,3\}$. By applying the Krasnoselskii fixed point theorem, the Schauder fixed point theorem, the Sadovskii fixed point theorem and the Banach contraction principle, four existence results of uncountably many bounded positive solutions of the system are established.
References:
[1] Agarwal R.P., O'Regan D., Saker S.H.: Oscillation criteria for second-order nonlinear neutral delay dynamic equations. J. Math. Anal. Appl. 300 (2004), 203–217. DOI 10.1016/j.jmaa.2004.06.041 | MR 2100247 | Zbl 1062.34068
[2] Erbe L.H., Kong W.K., Zhang B.G.: Oscillatory Theory for Functional Differential Equations. Marcel Dekker, New York, 1995.
[3] El-Metwally H., Kulenovic M.R.S., Hadziomerspahic S.: Nonoscillatory solutions for system of neutral delay equation. Nonlinear Anal. 54 (2003), 63–81. DOI 10.1016/S0362-546X(03)00044-0 | MR 1978965 | Zbl 1029.34057
[4] Hanuštiaková L'., Olach R.: Nonoscillatory bounded solutions of neutral differential systems. Nonlinear Anal. 68 (2008), 1816–1824. DOI 10.1016/j.na.2007.01.014 | MR 2388896 | Zbl 1147.34350
[5] Islam M.N., Raffoul Y.N.: Periodic solutions of neutral nonlinear system of differential equations with functional delay. J. Math. Anal. Appl. 331 (2007), 1175–1186. DOI 10.1016/j.jmaa.2006.09.030 | MR 2313707 | Zbl 1118.34057
[6] Levitan B.M.: Some problems of the theory of almost periodic functions I. Uspekhi Mat. Nauk 2(5) (1947), 133–192. MR 0027358
[7] Liu Z., Gao H.Y., Kang S.M., Shim S.H.: Existence and Mann iterative approximations of nonoscillatory solutions of nth-order neutral delay differential equations. J. Math. Anal. Appl. 329 (2007), 515–529. DOI 10.1016/j.jmaa.2006.06.079 | MR 2306819 | Zbl 1116.34051
[8] Lin X.Y.: Oscillatory of second-order nonlinear neutral differential equations. J. Math. Anal. Appl. 309 (2005), 442–452. DOI 10.1016/j.jmaa.2004.08.023 | MR 2154127
[9] Parhi N., Rath R.N.: Oscillation critiria for forced first order neutral differential equations with variable coefficients. J. Math. Anal. Appl. 256 (2001), 525–541. DOI 10.1006/jmaa.2000.7315 | MR 1821755
[10] Sadovskii B.N.: A fixed point principle. Funct. Anal. Appl. 1 (1967), 151–153. DOI 10.1007/BF01076087 | MR 0211302
[11] Yu Y., Wang H.: Nonoscillatory solutions of second-order nonlinear neutral delay equations. J. Math. Anal. Appl. 311 (2005), 445–456. DOI 10.1016/j.jmaa.2005.02.055 | MR 2168408 | Zbl 1089.34053
[12] Zhou Y.: Existence for nonoscillatory solutions of second-order nonlinear differential equations. J. Math. Anal. Appl. 331 (2007), 91–96. DOI 10.1016/j.jmaa.2006.08.048 | MR 2305990 | Zbl 1111.34049
[13] Zhang W.P., Feng W., Yan J.R., Song J.S.: Existence of nonoscillatory solutions of first-order linear neutral delay differential equations. Compu. Math. Appl. 49 (2005), 1021–1027. MR 2141246 | Zbl 1087.34539
[14] Zhou Y., Zhang B.G.: Existence of nonoscillatory solutions of higher-order neutral differential equations with positive and negative coefficients. Appl. Math. Lett. 15 (2002), 867–874. DOI 10.1016/S0893-9659(02)00055-1 | MR 1920988 | Zbl 1025.34065

Partner of