Previous |  Up |  Next


free sequences; cardinal functions; Boolean algebras
We study free sequences and related notions on Boolean algebras. A free sequence on a BA $A$ is a sequence $\langle a_\xi:\xi< \alpha \rangle$ of elements of $A$, with $\alpha$ an ordinal, such that for all $F,G\in[\alpha]^{<\omega}$ with $F<G$ we have $\prod_{\xi\in F}a_\xi\cdot \prod_{\xi\in G}-a_\xi \not=0$. A free sequence of length $\alpha$ exists iff the Stone space $\operatorname{Ult}(A)$ has a free sequence of length $\alpha $ in the topological sense. A free sequence is maximal iff it cannot be extended at the end to a longer free sequence. The main notions studied here are the spectrum function $$ {\frak f}_{\operatorname{sp}}(A)=\{|\alpha|:A\hbox{ has an infinite maximal free sequence of length }\alpha \} $$ and the associated min-max function $$ {\frak f}(A)=\min({\frak f}_{\operatorname{sp}}(A)). $$ Among the results are: for infinite cardinals $\kappa\leq\lambda$ there is a BA $A$ such that ${\frak f}_{\operatorname{sp}}(A)$ is the collection of all cardinals $\mu$ with $\kappa\leq\mu\leq\lambda$; maximal free sequences in $A$ give rise to towers in homomorphic images of $A$; a characterization of ${\frak f}_{\operatorname{sp}}(A)$ for $A$ a weak product of free BAs; ${\frak p}(A), \pi\chi_{\inf}(A)\leq{\frak f}(A)$ for $A$ atomless; a characterization of infinite BAs whose Stone spaces have an infinite maximal free sequence; a generalization of free sequences to free chains over any linearly ordered set, and the relationship of this generalization to the supremum of lengths of homomorphic images.
[1] Balcar B., Simon P. [91]: On minimal $\pi $-character of points in extremally disconnected compact spaces. Topology Appl. 41 (1991), 133–145. DOI 10.1016/0166-8641(91)90105-U | MR 1129703
[2] Balcar B., Simon P. [92]: Reaping number and $\pi $-character of Boolean algebras. Discrete Math. 108 (1992), 5–12. DOI 10.1016/0012-365X(92)90654-X | MR 1189823
[3] Blass A. [10]: Combinatorial cardinal characteristics of the continuum. Handbook of Set Theory (Foreman, Kanamori, eds), vol. 1, pp. 395–490. MR 2768685
[4] Dow A., Steprāns J., Watson S. [96]: Reaping numbers of Boolean algebras. Bull. London Math. Soc. 28 6 (1996), 591–599. DOI 10.1112/blms/28.6.591 | MR 1405489
[5] Hausdorff F. [1908]: Grundzüge einer Theorie der geordneten Mengen. Math. Ann. 65 (1908), 435–482. DOI 10.1007/BF01451165 | MR 1511478
[6] Koppelberg S. [89]: The General Theory of Boolean Algebras. Handbook on Boolean algebras, vol. 1, North-Holland, Amsterdam, 1989, xix+312 pp. MR 0991609
[7] Kunen K. [80]: Set Theory. North Holland, Amsterdam-New York, 1980, xvi+313 pp. MR 0597342
[8] McKenzie R., Monk J.D. [04]: On some small cardinals for Boolean algebras. J. Symbolic Logic 69 (2004), 3 674–682. DOI 10.2178/jsl/1096901761 | MR 2078916
[9] Monk J.D. [96]: Cardinal Invariants on Boolean Algebras. Birkhäuser, Basel, 1996, 298 pp. MR 1393943
[10] Monk J.D. [96b]: Minimum sized infinite partitions of Boolean algebras. Math. Logic Quart. 42 (1996), 4 537–550. DOI 10.1002/malq.19960420142 | MR 1417845
[11] Monk J.D. [01]: Continuum cardinals generalized to Boolean algebras. J. Symbolic Logic 66 4 (2001), 1928–1958. MR 1877033
[12] Monk J.D. [02]: An atomless interval Boolean algebra $A$ such that ${\frak a}(A)< {\frak t}(A)$. Algebra Universalis 47 (2002), 4 495–500. DOI 10.1007/s00012-002-8201-4 | MR 1923081
[13] Monk J.D. [08]: Maximal irredundance and maximal ideal independence in Boolean algebras. J. Symbolic Logic 73 1 (2008), 261–275. DOI 10.2178/jsl/1208358753 | MR 2387943
Partner of
EuDML logo