Previous |  Up |  Next


principal bundle; variational principle; invariant Lagrangian; Euler-Lagrange equations; Noether’s current; conservation law
In this work, we consider variational problems defined by $G$-invariant Lagrangians on the $r$-jet prolongation of a principal bundle $P$, where $G$ is the structure group of $P$. These problems can be also considered as defined on the associated bundle of the $r$-th order connections. The correspondence between the Euler-Lagrange equations for these variational problems and conservation laws is discussed.
[1] Brajerčík, J.: $Gl_{n} (\mathbb{R})$–invariant variational principles on frame bundles. Balkan J. Geom. Appl. 13 (1) (2008), 11–19. MR 2395370
[2] Brajerčík, J.: Order reduction of the Euler–Lagrange equations of higher order invariant variational problems on frame bundles. Czechoslovak Math. J. (2011), to appear. DOI 10.1007/s10587-011-0048-4 | MR 2886257 | Zbl 1249.53029
[3] Brajerčík, J., Krupka, D.: Variational principles for locally variational forms. J. Math. Phys. 46 (2005), 1–15, 052903. DOI 10.1063/1.1901323 | MR 2143003 | Zbl 1110.58011
[4] Castrillón López, M., García, P. L., Ratiu, T. S.: Euler–Poincaré reduction on principal bundles. Lett. Math. Phys. 58 (2001), 167–180. DOI 10.1023/A:1013303320765 | MR 1876252 | Zbl 1020.58018
[5] Castrillón López, M., García, P. L., Rodrigo, C.: Euler–Poincaré reduction in principal fibre bundles and the problem of Lagrange. Differential Geom. Appl. 25 (6) (2007), 585–593. DOI 10.1016/j.difgeo.2007.06.007 | MR 2373936
[6] Castrillón López, M., Ratiu, T. S., Shkoller, S.: Reduction in principal fiber bundles: Covariant Euler–Poincaré equations. Proc. Amer. Math. Soc. 128 (7) (2000), 2155–2164. DOI 10.1090/S0002-9939-99-05304-6 | MR 1662269
[7] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, Vol. 1, 2. Interscience Publishers, Wiley, New York, 1963. MR 0152974
[8] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer Verlag, Berlin, 1993. MR 1202431
[9] Krupka, D.: Some geometric aspects of variational problems in fibered manifold. Folia Fac. Sci. Natur. Univ. Purk. Brun. Phys. 14 (1973).
[10] Krupka, D.: A geometric theory of ordinary first order variational problems in fibered manifolds, II. Invariance. J. Math. Anal. Appl. 49 (1975), 469–476. DOI 10.1016/0022-247X(75)90190-0 | MR 0362398 | Zbl 0312.58003
[11] Krupka, D.: Lepagean forms in higher order variational theory. Proc. IUTAM-ISIMM Symposium, Modern Developements in Analytical Mechanics I: Geometrical Dynamics (Benenti, S., Francaviglia, M., Lichnerowicz, A., eds.), Accad. delle Scienze di Torino, Torino, 1983, pp. 197–238. MR 0773488 | Zbl 0572.58003
[12] Krupka, D., Janyška, J.: Lectures on Differential Invariants. Folia Fac. Sci. Natur. Univ. Purk. Brun. Math. 1 (1990). MR 1108622
[13] Trautman, A.: Invariance of Lagrangian systems, General RelativityPapers in honour of J. L. Synge. pp. 85–99, Clarendon Press, Oxford, 1972. MR 0503424
Partner of
EuDML logo