Previous |  Up |  Next


equilateral triangle dissection; latin trade
We define a proper triangulation to be a dissection of an integer sided equilateral triangle into smaller, integer sided equilateral triangles such that no point is the vertex of more than three of the smaller triangles. In this paper we establish necessary and sufficient conditions for a proper triangulation of a convex region to exist. Moreover we establish precisely when at least two such equilateral triangle dissections exist. We also provide necessary and sufficient conditions for some convex regions with up to four sides to have either one, or at least two, proper triangulations when an internal triangle is specified.
[1] Cavenagh N.J.: Latin trades and critical sets in latin squares. PhD Thesis, University of Queensland, Australia, 2003.
[2] Cavenagh N.J., Donovan D.M., Khodkar A., Lefevre J.G., McCourt T.A.: Identifying flaws in the security of critical sets in latin squares via triangulations. Australas. J. Combin. 52 (2012), 243–268. MR 2917933
[3] Drápal A.: On a planar construction of quasigroups. Czechoslovak Math. J. 41 (1991), no. 3, 538–548. MR 1117806
[4] Drápal A.: Hamming distances of groups and quasi-groups. Discrete Math. 235 (2001), no. 1–3, 189–197. DOI 10.1016/S0012-365X(00)00272-7 | MR 1829848
[5] Drápal A., Hämäläinen C.: An enumeration of equilateral triangle dissections. Discrete Applied Math. 158 (2010), no. 14, 1479–1495. DOI 10.1016/j.dam.2010.04.012 | MR 2659163 | Zbl 1205.52014
[6] Drápal A., Hämäläinen C., Kala V.: Latin bitrades, dissections of equilateral triangles and abelian groups. J. Combin. Des. 18 (2010), no. 1, 1–24. MR 2584401
[7] Keedwell A.D.: Critical sets in latin squares and related matters: an update. Util. Math. 65 (2004), 97–131. MR 2048415 | Zbl 1053.05019
[8] Laczkovich M.: Tilings of polygons with similar triangles. Combinatorica 10 (1990), no. 3, 281–306. DOI 10.1007/BF02122782 | MR 1092545 | Zbl 0927.52028
[9] Laczkovich M.: Tilings of triangles. Discrete Math. 140 (1995), no. 1–3, 79–94. DOI 10.1016/0012-365X(93)E0176-5 | MR 1333711 | Zbl 0822.05021
[10] Laczkovich M.: Tilings of polygons with similar triangles, II. Discrete Comput. Geom. 19 (1998), no. 3, Special Issue, 411425, dedicated to the memory of Paul Erdös. MR 1608883 | Zbl 0927.52028
[11] McCourt T.A.: On defining sets in latin squares and two intersection problems, one for latin squares and one for Steiner triple systems. PhD Thesis, University of Queensland, Australia, 2010. MR 2685159 | Zbl 1195.05014
[12] Tutte W.T.: The dissection of equilateral triangles into equilateral triangles. Proc. Cambridge Philos. Soc. 44 (1948), 463–482. MR 0027521 | Zbl 0030.40903
Partner of
EuDML logo