# Article

Full entry | PDF   (0.1 MB)
Keywords:
sum and difference set; integer power
Summary:
Let $n > m \geq 2$ be positive integers and $n=(m+1) \ell +r$, where $0 \leq r \leq m.$ Let $C$ be a subset of $\{0,1,\cdots ,n\}$. We prove that if $$|C|>\begin {cases} \lfloor n/2 \rfloor +1 &\text {if m is odd}, \\ m \ell /2 +\delta &\text {if m is even},\\ \end {cases}$$ where $\lfloor x \rfloor$ denotes the largest integer less than or equal to $x$ and $\delta$ denotes the cardinality of even numbers in the interval $[0,\min \{r,m-2\}]$, then $C-C$ contains a power of $m$. We also show that these lower bounds are best possible.
References:
[1] Alon, N.: Subset sums. J. Number Theory 27 (1987), 196-205. DOI 10.1016/0022-314X(87)90061-8 | MR 0909836 | Zbl 0622.10042
[2] Erdős, P.: Some problems and results on combinatorial number theory. Graph theory and its applications: East and West (Jinan, 1986). New York Academy of Sciences, Ann. N. Y. Acad. Sci. 576 (1989), 132-145. DOI 10.1111/j.1749-6632.1989.tb16392.x | MR 1110810
[3] Erdős, P., Freiman, G.: On two additive problems. J. Number Theory 34 (1990), 1-12. DOI 10.1016/0022-314X(90)90047-U | MR 1039762
[4] Freiman, G. A.: Sumsets and powers of 2. Sets, graphs and numbers. A birthday salute to Vera T. Sós and András Hajnal. Amsterdam: North-Holland Publishing Company. Colloq. Math. Soc. János Bolyai 60 (1992), 279-286. MR 1218196 | Zbl 0796.11005
[5] Kapoor, V.: Sets whose sumset avoids a thin sequence. J. Number Theory 130 (2010), 534-538. DOI 10.1016/j.jnt.2009.09.018 | MR 2584837 | Zbl 1217.11013
[6] Lev, V. F.: Representing powers of 2 by a sum of four integers. Combinatorica 16 (1996), 413-416. DOI 10.1007/BF01261325 | MR 1417350 | Zbl 0862.11008
[7] Nathanson, M. B., Sárközy, A.: Sumsets containing long arithmetic progressions and powers of 2. Acta Arith. 54 (1989), 147-154. MR 1024423 | Zbl 0693.10040
[8] Pan, H.: Note on integer powers in sumsets. J. Number Theory 117 (2006), 216-221. DOI 10.1016/j.jnt.2005.06.007 | MR 2204743 | Zbl 1101.11045

Partner of