Previous |  Up |  Next


Penrose transform; monogenic spinors
The Penrose transform gives an isomorphism between the kernel of the $2$-Dirac operator over an affine subset and the third sheaf cohomology group on the twistor space. In the paper we give an integral formula which realizes the isomorphism and decompose the kernel as a module of the Levi factor of the parabolic subgroup. This gives a new insight into the structure of the kernel of the operator.
[1] Baston, R. J.: Quaternionic complexes. J. Geom. Phys. 8 (1992), 29–52. DOI 10.1016/0393-0440(92)90042-Y | MR 1165872 | Zbl 0764.53022
[2] Baston, R. J., Eastwood, M.: The Penrose transform – its interaction with representation theory. Oxford University Press, 1989. MR 1038279 | Zbl 0726.58004
[3] Čap, A., Slovák, J.: Parabolic Geometries I, Background and General Theory. American Mathematical Society, Providence, 2009. MR 2532439 | Zbl 1183.53002
[4] Colombo, F., Sabadini, I., Sommen, F., Struppa, D. C.: Analysis of Dirac Systems and Computational Algebra. Birkhäauser, Boston, 2004. MR 2089988 | Zbl 1064.30049
[5] Franek, P.: Generalized Dolbeault Sequences in Parabolic Geometry. J. Lie Theory 18 (4) (2008), 757–773. MR 2523135 | Zbl 1176.17003
[6] Goodman, R., Wallach, N. R.: Representations and Invariants of the Classical Groups. Cambridge University Press, 1998. MR 1606831 | Zbl 0901.22001
[7] Krump, L., Salač, T.: Exactness of the Generalized Dolbeault Complex for k Dirac Operators in the Stable Rank. Numerical Analysis and Applied Mathematics ICNAAM, vol. 1479, 2012, pp. 300–303.
[8] Salač, T.: k-Dirac operators and parabolic geometries. arXiv:1201.0355, 2012.
[9] Salač, T.: The generalized Dolbeault complexes in Clifford analysis. Ph.D. thesis, MFF UK UUK, Prague, 2012.
[10] Ward, R. S., Wells, R. O., Jr., : Twistor Geometry and Field. Cambridge University Press, 1990. MR 1054377
Partner of
EuDML logo