[2] Dow, A.: 
An introduction to applications of elementary submodels to topology. Topology Proc. 13 (1988), 17-72. 
MR 1031969 | 
Zbl 0696.03024[5] Kunen, K.: 
Set Theory. An Introduction to Independence Proofs. 2nd print. Studies in Logic and the Foundations of Mathematics, 102 North-Holland, Amsterdam (1983). 
MR 0756630 | 
Zbl 0534.03026[6] Lindenstrauss, J., Preiss, D., Tišer, J.: 
Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces. Annals of Mathematics Studies 179 Princeton, NJ: Princeton University Press (2012). 
MR 2884141 | 
Zbl 1241.26001[8] Zajíek, L.: 
Sets of $\sigma$-porosity and sets of $\sigma$-porosity $(q)$. Čas. Pěst. Mat. 101 (1976), 350-359. 
MR 0457731[9] Zajíek, L.: 
A generalization of an Ekeland-Lebourg theorem and the differentiability of distance functions. Suppl. Rend. Circ. Mat. Palermo, II. Ser. 3 (1984), 403-410. 
MR 0744405[11] Zajíek, L.: 
Fréchet differentiability, strict differentiability and subdifferentiability. Czech. Math. J. 41 (1991), 471-489. 
MR 1117801[12] Zajíek, L.: 
Products of non-$\sigma$-porous sets and Foran systems. Atti Semin. Mat. Fis. Univ. Modena 44 (1996), 497-505. 
MR 1428780[14] Zajíek, L., Zelený, M.: 
Inscribing compact non-$\sigma$-porous sets into analytic non-$\sigma$-porous sets. Fundam. Math. 185 (2005), 19-39. 
MR 2161750[15] Zelený, M., Pelant, J.: 
The structure of the $\sigma$-ideal of $\sigma$-porous sets. Commentat. Math. Univ. Carol. 45 (2004), 37-72. 
MR 2076859 | 
Zbl 1101.28001