Previous |  Up |  Next


time scale; even order; delay; oscillation; Taylor monomial
One of the important methods for studying the oscillation of higher order differential equations is to make a comparison with second order differential equations. The method involves using Taylor's Formula. In this paper we show how such a method can be used for a class of even order delay dynamic equations on time scales via comparison with second order dynamic inequalities. In particular, it is shown that nonexistence of an eventually positive solution of a certain second order delay dynamic inequality is sufficient for oscillation of even order dynamic equations on time scales. The arguments are based on Taylor monomials on time scales.
[1] Agarwal, R. P., Bohner, M.: Basic calculus on time scales and some of its applications. Result. Math. 35 (1999), 3-22. DOI 10.1007/BF03322019 | MR 1678096 | Zbl 0927.39003
[2] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. Birkhäuser, Boston (2001). MR 1843232 | Zbl 0993.39010
[3] Çakmak, D., Tiryaki, A.: Oscillation criteria for certain forced second-order nonlinear differential equations with delayed argument. Comput. Math. Appl. 49 (2005), 1647-1653. DOI 10.1016/j.camwa.2005.02.005 | MR 2154674 | Zbl 1093.34552
[4] El-Sayed, M. A.: An oscillation criterion for a forced second-order linear differential equation. Proc. Am. Math. Soc. 118 (1993), 813-817. MR 1154243 | Zbl 0777.34023
[5] Erbe, L., Hassan, T. S., Peterson, A.: Oscillation of second order neutral delay differential equations. Adv. Dyn. Syst. Appl. 3 (2008), 53-71. MR 2547661
[6] Han, Z., Sun, S., Shi, B.: Oscillation criteria for a class of second-order Emden-Fowler delay dynamic equations on time scales. J. Math. Anal. Appl. 334 (2007), 847-858. DOI 10.1016/j.jmaa.2007.01.004 | MR 2338632 | Zbl 1125.34047
[7] Kartsatos, A. G.: On the maintenance of oscillation of $n$-th order equations under the effect of a small forcing term. J. Differ. Equations 10 (1971), 355-363. DOI 10.1016/0022-0396(71)90058-1 | MR 0288358
[8] Lakshmikantham, V., Sivasundaram, S., Kaymakçalan, B.: Dynamic Systems on Measure Chains. Kluwer Academic Publishers, Dordrecht (1996). MR 1419803 | Zbl 0869.34039
[9] Mert, R., Zafer, A.: Eventually positive solutions of second-order superlinear dynamic equations. Further progress in analysis. Proceedings of the 6th International ISAAC Congress, 13-18 August, 2007, Ankara, Turkey, World Scientific (2009), 535-544 H. G. W. Begehr et. al. MR 2581655 | Zbl 1185.34146
[10] Mert, R., Zafer, A.: A necessary and sufficient condition for oscillation of second order sublinear delay dynamic equations. Discrete Contin. Dyn. Syst. Supplement Volume (2011), 1061-1067. MR 3012907
[11] Naito, M.: On strong oscillation of retarded differential equations. Hiroshima Math. J. 11 (1981), 553-560. MR 0635038 | Zbl 0512.34056
[12] Onose, H.: A comparison theorem and the forced oscillation. Bull. Aust. Math. Soc. 13 (1975), 13-19. DOI 10.1017/S0004972700024217 | MR 0393732 | Zbl 0307.34034
[13] Ou, C. H., Wong, J. S. W.: Forced oscillation of $n$th order functional differential equations. J. Math. Anal. Appl. 262 (2001), 722-732. DOI 10.1006/jmaa.2001.7614 | MR 1859335 | Zbl 0997.34059
[14] Sun, Y. G., Wong, J. S. W.: Note on forced oscillation of $n$th-order sublinear differential equations. J. Math. Anal. Appl. 298 (2004), 114-119. DOI 10.1016/j.jmaa.2004.03.076 | MR 2086536 | Zbl 1064.34020
[15] Yílmaz, Y. Şahiner, Zafer, A.: Oscillation of even order nonlinear neutral differential equations with damping. Math. Inequal. Appl. 1 (1998), 445-451. MR 1629420
[16] Yang, Q.: Interval oscillation criteria for a forced second order nonlinear ordinary differential equations with oscillatory potential. Appl. Math. Comput. 135 (2003), 49-64. DOI 10.1016/S0096-3003(01)00307-1 | MR 1934314 | Zbl 1030.34034
Partner of
EuDML logo