Full entry |
PDF
(0.4 MB)
Feedback

strongly $\phi $-accretive; locally strongly $\phi $-accretive; locally $\lambda $-strongly $\phi $-accretive; fixed point theorem

References:

[1] Altman, M.: **Contractor directions, directional contractors and directional contractions for solving equations**. Pacific J. Math. 62 (1976), 1–18. DOI 10.2140/pjm.1976.62.1 | MR 0473939 | Zbl 0352.47027

[2] Altman, M.: **Contractors and contractor directions theory and applications**. Marcel Dekker, New York, 1977. MR 0451686 | Zbl 0363.65045

[3] Altman, M.: **Weak contractor directions and weak directional contractions**. Nonlinear Anal. 7 (1983), 1043–1049. MR 0713214 | Zbl 0545.47034

[4] Browder, F. E.: **Normal solvability and existence theorems for nonlinear mappings in Banach spaces**. Problems in Nonlinear Analysis (C.I.M.E., IV Ciclo, Varenna, 1970), pp. 17–35, Edizioni Cremones, Rome, Italy, 1971. MR 0467430 | Zbl 0234.47056

[5] Browder, F. E.: **Normal solvability for nonlinear mappings and the geometry of Banach spaces**. Problems in Nonlinear Analysis,C.I.M.E., IV Ciclo, Varenna, 1970, pp. 37–66, Edizioni Cremonese, Rome, Italy, 1971. MR 0438201 | Zbl 0234.47055

[6] Browder, F. E.: **Normal solvability $\phi $–accretive mappings of Banach spaces**. Bull. Amer. Math. Soc. 78 (1972), 186–192. DOI 10.1090/S0002-9904-1972-12907-0 | MR 0306992

[7] Browder, F. E.: **Nonlinear operators and nonlinear equations of evolution in Banach spaces**. Proc. Sympos. Pure Math., vol. 18, Amer. Math. Soc., Providence, 1976. MR 0405188 | Zbl 0327.47022

[8] Caristi, J.: **Fixed point theorems for mappings satisfying inwardness conditions**. Trans. Amer. Math. Soc. 215 (1976), 241–251. DOI 10.1090/S0002-9947-1976-0394329-4 | MR 0394329 | Zbl 0305.47029

[9] Ekeland, I.: **Sur les problems variationnels**. C. R. Acad. Sci. Paris Sér. I Math. 275 (1972), 1057–1059. MR 0310670

[10] Goebel, K., Kirk, W. A.: **Topics in metric fixed point theory**. Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, 1990. MR 1074005 | Zbl 0708.47031

[11] Kirk, W. A.: **Caristi’s fixed point theorem and the theory of normal solvability**. Proc. Conf. Fixed Point Theory and its Applications (Dalhousie Univ., June 1975), Academic Press, 1976, pp. 109–120. MR 0454754 | Zbl 0377.47042

[12] Park, J. A., Park, S.: **Surjectivity of $\phi $–accretive operators**. Proc. Amer. Math. Soc. 90 (2) (1984), 289–292. MR 0727252

[13] Ray, W. O.: **Phi–accretive operators and Ekeland’s theorem**. J. Math. Anal. Appl. 88 (1982), 566–571. DOI 10.1016/0022-247X(82)90215-3 | MR 0667080 | Zbl 0497.47034

[14] Ray, W. O., Walker, A. M.: **Mapping theorems for Gâteaux differentiable and accretive operators**. Nonlinear Anal. 6 (5) (1982), 423–433. DOI 10.1016/0362-546X(82)90057-8 | MR 0661709 | Zbl 0488.47031