Previous |  Up |  Next


MSC: 54B20, 54F15
arc continuum; continuum; indecomposable; symmetric product; unique hyperspace
Let $X$ be a metric continuum. Let $F_{n}(X)$ denote the hyperspace of nonempty subsets of $X$ with at most $n$ elements. We say that the continuum $X$ has unique hyperspace $F_{n}(X)$ provided that the following implication holds: if $Y$ is a continuum and $F_{n}(X)$ is homeomorphic to $F_{n}(Y)$, then $X$ is homeomorphic to $Y$. In this paper we prove the following results: (1) if $X$ is an indecomposable continuum such that each nondegenerate proper subcontinuum of $X$ is an arc, then $X$ has unique hyperspace $F_{2}(X)$, and (2) let $X$ be an arcwise connected continuum for which there exists a unique point $v\in X$ such that $v$ is the vertex of a simple triod. Then $X$ has unique hyperspace $F_{2}(X)$.
[1] Acosta G., Hernández-Gutiérrez R., Martínez-de-la-Vega V.: Dendrites and symmetric products. Glas. Mat. Ser. III 44 (64) (2009), 195–210. DOI 10.3336/gm.44.1.12 | MR 2525664 | Zbl 1173.54001
[2] Castañeda E.: Embedding symmetric products in Euclidean spaces. Continuum Theory, Lectures Notes in Pure and Applied Mathematics, 230, Marcel Dekker, New York, 2002, pp. 67–79. MR 2001435 | Zbl 1045.54006
[3] Castañeda E., Illanes A.: Finite graphs have unique symmetric products. Topology Appl. 153 (2006), 1434–1450. DOI 10.1016/j.topol.2005.04.006 | MR 2211209 | Zbl 1095.54006
[4] Curtis D., Nhu N.T.: Hyperspaces of finite subsets which are homeomorphic to $\aleph _{0}$-dimensional linear metric spaces. Topology Appl. 19 (1985), 251–260. DOI 10.1016/0166-8641(85)90005-7 | MR 0794488
[5] Hernández-Gutiérrez R., Martínez-de-la-Vega V.: Rigidity of symmetric products. preprint.
[6] Herrera-Carrasco D., López M. de J., Macías-Romero F.: Dendrites with unique symmetric products. Topology Proc. 34 (2009), 175–190. MR 2511904 | Zbl 1232.54015
[7] Herrera-Carrasco D., Macías-Romero F., Vázquez-Juárez F.: Peano continua with unique symmetric products. J. Math. Res. 4 (2012), 1–9. MR 2949114
[8] Hurewicz W., Wallman H.: Dimension Theory. Princeton University Press, Princeton, 1969. MR 0006493 | Zbl 0036.12501
[9] Illanes A.: Dendrites with unique hyperspace $F_{2}(X)$. JP J. Geom. Topol. 2 (2002), 75–96. MR 1942627 | Zbl 1025.54021
[10] Illanes A.: Uniqueness of hyperspaces. Questions Answers Gen. Topology 30 (2012), 21–44. MR 2954279
[11] Illanes A.: Models of hyperspaces. Topology Proc. 41 (2013), 39–64. MR 2920967
[12] Illanes A., Martínez-Montejano J.M.: Compactifications of $[0,\infty )$ with unique hyperspace $F_{n}(X)$. Glas. Mat. Ser. III 44 (64) (2009), 457–478. MR 2587312 | Zbl 1185.54008
[13] Illanes A., Nadler S.B., Jr.: Hyperspaces; Fundamentals and Recent Advances. Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, New York, 1999. MR 1670250 | Zbl 0933.54009
[14] Nadler S.B., Jr.: Continuum Theory. An Introduction. Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, New York, 1992. MR 1192552 | Zbl 0757.54009
Partner of
EuDML logo