# Article

Full entry | PDF   (0.2 MB)
Keywords:
mixed exponential sum; mean value; Dirichlet character; general Gauss sum; computational formula
Summary:
The main purpose of the paper is to study, using the analytic method and the property of the Ramanujan's sum, the computational problem of the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum. For integers $m$, $n$, $k$, $q$, with $k\geq {1}$ and $q\geq {3}$, and Dirichlet characters $\chi$, $\bar {\chi }$ modulo $q$ we define a mixed exponential sum $$C(m,n;k;\chi ;\bar {\chi };q)= \sum \limits _{a=1}^{q}{\mkern -4mu\vrule width0pt height1em}' \chi (a)G_{k}(a,\bar {\chi })e \Big (\frac {ma^{k}+n\overline {a^{k}}}{q}\Big ),$$ with Dirichlet character $\chi$ and general Gauss sum $G_{k}(a,\bar {\chi })$ as coefficient, where $\sum \nolimits '$ denotes the summation over all $a$ such that $(a,q)=1$, $a\bar {a}\equiv {1}\mod {q}$ and $e(y)={\rm e}^{2\pi {\rm i} y}$. We mean value of $$\sum _{m}\sum _{\chi }\sum _{\bar {\chi }}|C(m,n;k;\chi ;\bar {\chi };q)|^{4},$$ and give an exact computational formula for it.
References:
[1] Apostol, T. M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics Springer, New York (1976). MR 0434929 | Zbl 0335.10001
[2] Calderón, C., Velasco, M. J. De, Zarate, M. J.: An explicit formula for the fourth moment of certain exponential sums. Acta Math. Hung. 130 (2011), 203-222. DOI 10.1007/s10474-010-0043-5 | MR 2765565 | Zbl 1240.11090
[3] Chalk, J. H. H., Smith, R. A.: On Bombieri's estimate for exponential sums. Acta Arith. 18 (1971), 191-212. MR 0309880 | Zbl 0219.12021
[4] Davenport, H.: On certain exponential sums. J. Reine Angew. Math. 169 (1933), 158-176. Zbl 0006.29501
[5] Estermann, T.: On Kloosterman's sum. Mathematika, Lond. 8 (1961), 83-86. DOI 10.1112/S0025579300002187 | MR 0126420 | Zbl 0114.26302
[6] Evans, R.: Seventh power moments of Kloosterman sums. Isr. J. Math. 175 (2010), 349-362. DOI 10.1007/s11856-010-0014-0 | MR 2607549 | Zbl 1242.11059
[7] Gong, K., Wan, D. Q.: Power moments of Kloosterman sums.
[8] Kanemitsu, S., Tanigawa, Y., Yi, Y., Zhang, W. P.: On general Kloosterman sums. Ann. Univ. Sci. Budap. Rolondo Eötvös, Sect. Comput. 22 (2003), 151-160. MR 2094014 | Zbl 1108.11059
[9] Kloosterman, H. D.: On the representation of numbers in the form $ax^{2}+by^{2}+cz^{2}+dt^{2}$. Acta Math. 49 (1927), 407-464. DOI 10.1007/BF02564120 | MR 1555249
[10] Liu, H.: Mean value of mixed exponential sums. Proc. Am. Math. Soc. 136 (2008), 1193-1203. DOI 10.1090/S0002-9939-07-09075-2 | MR 2367093 | Zbl 1145.11063
[11] Liu, H.: Mean value of some exponential sums and applications to Kloosterman sums. J. Math. Anal. Appl. 361 (2010), 205-223. DOI 10.1016/j.jmaa.2009.08.064 | MR 2567295
[12] Liu, H., Zhang, W.: On the general $k$-th Kloosterman sums and its fourth power mean. Chin. Ann. Math., Ser. B 25 (2004), 97-102. DOI 10.1142/S0252959904000093 | MR 2033954 | Zbl 1048.11065
[13] Wang, T., Zhang, W. P.: On the fourth and sixth power mean of the mixed exponential sums. Sci. China Math. 41 (2011), 1-6.
[14] Xu, Z., Zhang, T., Zhang, W.: On the mean value of the two-term exponential sums with Dirichlet characters. J. Number Theory 123 (2007), 352-362. DOI 10.1016/j.jnt.2006.07.005 | MR 2300819 | Zbl 1197.11103
[15] Ye, Y.: Estimation of exponential sums of polynomials of higher degrees II. Acta Arith. 93 (2000), 221-235. MR 1759916 | Zbl 0953.11028
[16] Zhang, W.: The fourth and sixth power mean of the classical Kloosterman sums. J. Number Theory 131 (2011), 228-238. DOI 10.1016/j.jnt.2010.08.008 | MR 2736853 | Zbl 1218.11074
[17] Zhang, W.: On the general Kloosterman sum and its fourth power mean. J. Number Theory 104 (2004), 156-161. DOI 10.1016/S0022-314X(03)00154-9 | MR 2021631 | Zbl 1039.11052
[18] Zhang, W., Yi, Y., He, X.: On the $2k$-th power mean of Dirichlet L-functions with the weight of general Kloosterman sums. J. Number Theory 84 (2000), 199-213. DOI 10.1006/jnth.2000.2515 | MR 1795790 | Zbl 0958.11061

Partner of