MSC:
91A12

Full entry |
PDF
(0.2 MB)
Feedback

cooperative games; one-point solutions; additive games; Harsanyi dividends

References:

[1] Charnes, A., Rousseau, J., Seiford, L.: **Complements, molifiers and the propensity to disrupt**. Internat. J. Game Theory 7 (1978), 37-50. DOI 10.1007/BF01763119 | MR 0484464

[2] Derks, J., Laan, G. van der, Vasil'ev, V.: **Characterizations of the random order values by Harsanyi payoff vectors**. Math. Methods Oper. Res. 64 (2006), 155-163. DOI 10.1007/s00186-006-0063-7 | MR 2264778

[3] Grabisch, M.: **$k$-order additive discrete fuzzy measures and their representations**. Fuzzy Sets and Systems 92 (1997), 167-189. DOI 10.1016/S0165-0114(97)00168-1 | MR 1486417

[4] Harsanyi, J. C.: **A simplified bargaining model for the $n$-person cooperative game**. Internat. Econom. Rev. 4 (1963), 194-220. DOI 10.2307/2525487 | Zbl 0118.15103

[5] Kultti, K., Salonen, H.: **Minimum norm solutions for cooperative games**. Internat. J. Game Theory 35 (2007), 591-602. DOI 10.1007/s00182-007-0070-9 | MR 2304556 | Zbl 1131.91008

[6] Monderer, D., Samet, D.: **Variations on the Shapley value**. In: Handbook of Game Theory with Economic Applications, Vol. 3 (R. Aumann and S. Hart, eds.), Elsevier Science Publishers, Amsterdam 2002, pp. 2055-2076.

[7] Ruiz, L. M., Valenciano, F., Zarzuelo, F. M.: **The family of least square values for transferable utility games**. Games and Econom. Behavior 24 (1998), 109-130. DOI 10.1006/game.1997.0622 | MR 1631182 | Zbl 0910.90276

[8] Ruiz, L. M., Valenciano, F., Zarzuelo, F. M.: **Some new results on least square values for TU games**. TOP 6 (1998), 139-158. DOI 10.1007/BF02564802 | MR 1643704 | Zbl 0907.90285