Full entry |
PDF
(0.2 MB)
Feedback

multiple-sets split feasibility problem; subgradient; extrapolated technique

References:

[1] Bauschke, H. H., Borwein, J. M.: **On projection algorithms for solving convex feasibility problems**. SIAM Rev. 38 (1996), 367-426. DOI 10.1137/S0036144593251710 | MR 1409591 | Zbl 0865.47039

[2] Byrne, C.: **Iterative oblique projection onto convex sets and the split feasibility problem**. Inverse Probl. 18 (2002), 441-453. MR 1910248 | Zbl 0996.65048

[3] Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: **A unified approach for inversion problems in intensity-modulated radiation therapy**. Physics in Medicine and Biology 51 (2006), 2353-2365.

[4] Censor, Y., Elfving, T.: **A multiprojection algorithm using Bregman projections in a product space**. Numer. Algorithms 8 (1994), 221-239. DOI 10.1007/BF02142692 | MR 1309222 | Zbl 0828.65065

[5] Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: **The multiple-sets split feasibility problem and its applications for inverse problems**. Inverse Probl. 21 (2005), 2071-2084. MR 2183668 | Zbl 1089.65046

[6] Censor, Y., Motova, A., Segal, A.: **Perturbed projections and subgradient projections for the multiple-sets split feasibility problem**. J. Math. Anal. Appl. 327 (2007), 1244-1256. DOI 10.1016/j.jmaa.2006.05.010 | MR 2280001 | Zbl 1253.90211

[7] Censor, Y., Segal, A.: **Sparse string-averaging and split common fixed points**. Nonlinear Analysis and Optimization I. Nonlinear Analysis. A conference in celebration of Alex Ioffe's 70th and Simeon Reich's 60th birthdays, Haifa, Israel, June 18-24, 2008 A. Leizarowitz et al. Contemporary Mathematics 513 American Mathematical Society, Providence (2010), 125-142. MR 2668242 | Zbl 1229.47107

[8] Censor, Y., Segal, A.: **The split common fixed point problem for directed operators**. J. Convex Anal. 16 (2009), 587-600. MR 2559961 | Zbl 1189.65111

[9] Combettes, P. L.: **Convex set theoretic image reconvery by extrapolated iterations of parallel subgradient projections**. IEEE Transactions on Image Processing 6 (1997), 493-506. DOI 10.1109/83.563316

[10] Dang, Y., Gao, Y.: **Non-monotonous accelerated parallel subgradient projection algorithm for convex feasibility problem**. Optimization (electronic only) (2012).

[11] Dang, Y., Gao, Y.: **The strong convergence of a KM-CQ-like algorithm for a split feasibility problem**. Inverse Probl. 27 (2011), Article ID 015007. MR 2746410 | Zbl 1211.65065

[12] Masad, E., Reich, S.: **A note on the multiple-set split convex feasibility problem in Hilbert space**. J. Nonlinear Convex Anal. 8 (2007), 367-371. MR 2377859 | Zbl 1171.90009

[13] Pierra, G.: **Decomposition through formalization in a product space**. Math. Program. 28 (1984), 96-115. DOI 10.1007/BF02612715 | MR 0727421 | Zbl 0523.49022

[14] Pierra, G.: **Parallel constraint decomposition for minimization of a quadratic form**. Optimization Techniques. Modeling and Optimization in the Service of Man Part 2. Proceedings, 7th IFIP conference, Nice, September 8-12, 1975 J. Cea Lecture Notes in Computer Science 41 Springer, Berlin (1976), 200-218 French.

[15] Xu, H.-K.: **A variable Krasnosel'skiĭ-Mann algorithm and the multiple-set split feasibility problem**. Inverse Probl. 22 (2006), 2021-2034. MR 2277527 | Zbl 1126.47057

[16] Yang, Q.: **The relaxed CQ algorithm solving the split feasibility problem**. Inverse Probl. 20 (2004), 1261-1266. MR 2087989 | Zbl 1066.65047