Previous |  Up |  Next


symmetric group; simplicial complex; $f$- and $h$-vector (triangle); barycentric subdivision of a simplicial complex
For a simplicial complex $\Delta $ we study the behavior of its $f$- and $h$-triangle under the action of barycentric subdivision. In particular we describe the $f$- and $h$-triangle of its barycentric subdivision $\mathop {\rm sd}(\Delta )$. The same has been done for $f$- and $h$-vector of $\mathop {\rm sd}(\Delta )$ by F. Brenti, V. Welker (2008). As a consequence we show that if the entries of the $h$-triangle of $\Delta $ are nonnegative, then the entries of the $h$-triangle of $\mathop {\rm sd}(\Delta )$ are also nonnegative. We conclude with a few properties of the $h$-triangle of $\mathop {\rm sd}(\Delta )$.
[1] Björner, A., Wachs, M. L.: Shellable nonpure complexes and posets I. Trans. Am. Math. Soc. 348 1299-1327 (1996). DOI 10.1090/S0002-9947-96-01534-6 | MR 1333388 | Zbl 0857.05102
[2] Brenti, F., Welker, V.: $f$-vectors of barycentric subdivisions. Math. Z. 259 849-865 (2008). DOI 10.1007/s00209-007-0251-z | MR 2403744 | Zbl 1158.52013
[3] Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Graduate Texts in Mathematics 227 Springer, New York (2005). MR 2110098 | Zbl 1090.13001
[4] Stanley, R. P.: Combinatorics and Commutative Algebra. Progress in Mathematics 41 Birkhäuser, Basel (1996). MR 1453579 | Zbl 0838.13008
Partner of
EuDML logo