# Article

Full entry | PDF   (0.2 MB)
Keywords:
Ore extension; automorphism; derivation; minimal prime; pseudo-valuation ring; near pseudo-valuation ring
Summary:
Let $R$ be a ring. We recall that $R$ is called a near pseudo-valuation ring if every minimal prime ideal of $R$ is strongly prime. Let now $\sigma$ be an automorphism of $R$ and $\delta$ a $\sigma$-derivation of $R$. Then $R$ is said to be an almost $\delta$-divided ring if every minimal prime ideal of $R$ is $\delta$-divided. Let $R$ be a Noetherian ring which is also an algebra over $\mathbb {Q}$ ($\mathbb {Q}$ is the field of rational numbers). Let $\sigma$ be an automorphism of $R$ such that $R$ is a $\sigma (*)$-ring and $\delta$ a $\sigma$-derivation of $R$ such that $\sigma (\delta (a)) = \delta (\sigma (a))$ for all $a \in R$. Further, if for any strongly prime ideal $U$ of $R$ with $\sigma (U) = U$ and $\delta (U)\subseteq \delta$, $U[x; \sigma , \delta ]$ is a strongly prime ideal of $R[x; \sigma , \delta ]$, then we prove the following: (1) $R$ is a near pseudo valuation ring if and only if the Ore extension $R[x; \sigma ,\delta ]$ is a near pseudo valuation ring. (2) $R$ is an almost $\delta$-divided ring if and only if $R[x;\sigma ,\delta ]$ is an almost $\delta$-divided ring.
References:
[1] Anderson, D. F.: Comparability of ideals and valuation overrings. Houston J. Math. 5 (1979), 451-463. MR 0567906 | Zbl 0407.13001
[2] Anderson, D. F.: When the dual of an ideal is a ring. Houston J. Math. 9 (1983), 325-332. MR 0719090 | Zbl 0526.13015
[3] Badawi, A.: On divided commutative rings. Commun. Algebra 27 (1999), 1465-1474. DOI 10.1080/00927879908826507 | MR 1669131 | Zbl 0923.13001
[4] Badawi, A.: On domains which have prime ideals that are linearly ordered. Commun. Algebra 23 (1995), 4365-4373. DOI 10.1080/00927879508825469 | MR 1352538 | Zbl 0843.13007
[5] Badawi, A.: On $\phi$-pseudo-valuation Rings. Advances in Commutative Ring Theory. D. E. Dobbs et al. Proceedings of the 3rd International Conference, Fez, Morocco Lect. Notes Pure Appl. Math. 205 Marcel Dekker, New York (1999), 101-110. MR 1767453
[6] Badawi, A.: On pseudo-almost valuation domains. Commun. Algebra 35 (2007), 1167-1181. DOI 10.1080/00927870601141951 | MR 2313658 | Zbl 1113.13001
[7] Badawi, A., Anderson, D. F., Dobbs, D. E.: Pseudo-valuation Rings. Commutative Ring Theory. P.-J. Cahen et al. Proceedings of the 2nd International Conference, Fes, Morocco, June 5-10, 1995. Lect. Notes Pure Appl. Math. 185 Marcel Dekker, New York (1997), 57-67. MR 1422466
[8] Badawi, A., Houston, E.: Powerful ideals, strongly primary ideals, almost pseudo-valuation domains, and conducive domains. Commun. Algebra 30 (2002), 1591-1606. DOI 10.1081/AGB-120013202 | MR 1894030 | Zbl 1063.13017
[9] Bell, H. E., Mason, G.: On derivations in near-rings and rings. Math. J. Okayama Univ. 34 (1992), 135-144. MR 1272613 | Zbl 0810.16042
[10] Bhat, V. K.: A note on completely prime ideals of Ore extensions. Int. J. Algebra Comput. 20 (2010), 457-463. DOI 10.1142/S021819671000573X | MR 2658421 | Zbl 1194.16020
[11] Bhat, V. K.: On near pseudo valuation rings and their extensions. Int. Electron. J. Algebra (electronic only) 5 (2009), 70-77. MR 2471380 | Zbl 1187.13017
[12] Bhat, V. K.: Polynomial rings over pseudovaluation rings. Int. J. Math. Math. Sci. 2007 (2007), Article ID 20138, 6 pages. MR 2336139 | Zbl 1167.16021
[13] Bhat, V. K., Kumari, N.: On Ore extensions over near pseudo valuation rings. Int. J. Math. Game Theory Algebra 20 (2011), 69-77. MR 2908253
[14] Bhat, V. K., Kumari, N.: Transparency of $\sigma(\ast)$-rings and their extensions. Int. J. Algebra 2 (2008), 919-924. MR 2481211
[15] Goodearl, K. R., Jr., R. B. Warfield: An Introduction to Noncommutative Noetherian Rings. London Mathematical Society Student Texts 16 Cambridge University Press, Cambridge (1989). MR 1020298 | Zbl 0679.16001
[16] Hedstrom, J. R., Houston, E. G.: Pseudo-valuation domains. Pac. J. Math. 75 (1978), 137-147. DOI 10.2140/pjm.1978.75.137 | MR 0485811 | Zbl 0416.13014
[17] Krempa, J.: Some examples of reduced rings. Algebra Colloq. 3 (1996), 289-300. MR 1422968 | Zbl 0859.16019
[18] Kwak, T. K.: Prime radicals of skew polynomial rings. Int. J. Math. Sci. 2 (2003), 219-227. MR 2061508 | Zbl 1071.16024
[19] McConnell, J. C., Robson, J. C.: Noncommutative Noetherian Rings. With the cooperation of L. W. Small. Reprinted with corrections from the 1987 original. Graduate Studies in Mathematics 30 American Mathematical Society, Providence (2001). MR 1811901 | Zbl 0980.16019

Partner of