# Article

Full entry | PDF   (0.1 MB)
Keywords:
element order; set of the numbers of elements of the same order; linear group
Summary:
Let $G$ be a finite group and $\pi _{e}(G)$ be the set of element orders of $G$. Let $k \in \pi _{e}(G)$ and $m_{k}$ be the number of elements of order $k$ in $G$. Set ${\rm nse}(G):=\{m_{k}\colon k \in \pi _{e}(G)\}$. In fact ${\rm nse}(G)$ is the set of sizes of elements with the same order in $G$. In this paper, by ${\rm nse}(G)$ and order, we give a new characterization of finite projective special linear groups $L_{2}(p)$ over a field with $p$ elements, where $p$ is prime. We prove the following theorem: If $G$ is a group such that $|G|=|L_{2}(p)|$ and ${\rm nse}(G)$ consists of $1$, $p^{2}-1$, $p(p+\epsilon )/2$ and some numbers divisible by $2p$, where $p$ is a prime greater than $3$ with $p \equiv 1$ modulo $4$, then $G \cong L_{2}(p)$.
References:
[1] Asboei, A. K., Amiri, S. S. S., Iranmanesh, A., Tehranian, A.: A characterization of symmetric group $S_{r}$, where $r$ is prime number. Ann. Math. Inform. 40 (2012), 13-23. MR 3005112 | Zbl 1261.20025
[2] Asboei, A. K., Amiri, S. S. S., Iranmanesh, A., Tehranian, A.: A new characterization of $A_{7}$ and $A_{8}$. in An. Ştiinţ. Univ. Ovidius'' Constanţa Ser. Mat 21 (2013),43-50. MR 3145090
[3] Asboei, A. K., Amiri, S. S. S., Iranmanesh, A., Tehranian, A.: A new characterization of sporadic simple groups by nse and order. J. Algebra Appl. 12 (2013), Paper No. 1250158. DOI 10.1142/S0219498812501587 | MR 3005607
[4] Brauer, R., Reynolds, W. F.: On a problem of E. Artin. Ann. Math. 68 (1958), 713-720. DOI 10.2307/1970164 | MR 0100635 | Zbl 0082.24803
[5] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups. Maximal subgroups and ordinary characters for simple groups. Clarendon Press Oxford (1985). MR 0827219 | Zbl 0568.20001
[6] Frobenius, G.: Verallgemeinerung des Sylow'schen Satzes. Berl. Ber. (1895), German 981-993.
[7] Khatami, M., Khosravi, B., Akhlaghi, Z.: A new characterization for some linear groups. Monatsh. Math. 163 (2011), 39-50. DOI 10.1007/s00605-009-0168-1 | MR 2787581 | Zbl 1216.20022
[8] Mazurov, V. D., Khukhro, E. I., eds.: The Kourovka Notebook. Unsolved Problems in Group Theory. Including archive of solved problems. Institute of Mathematics, Russian Academy of Sciences, Siberian Div. Novosibirsk (2006). MR 2263886
[9] Shao, C., Jiang, Q.: A new characterization of Mathieu groups. Arch. Math., Brno 46 (2010), 13-23. MR 2644451 | Zbl 1227.20007
[10] Shao, C., Shi, W., Jiang, Q.: Characterization of simple $K_{4}$-groups. Front. Math. China 3 (2008), 355-370. DOI 10.1007/s11464-008-0025-x | MR 2425160 | Zbl 1165.20020
[11] Shen, R., Shao, C., Jiang, Q., Shi, W., Mazurov, V.: A new characterization of $A_{5}$. Monatsh. Math. 160 (2010), 337-341. DOI 10.1007/s00605-008-0083-x | MR 2661315 | Zbl 1196.20032
[12] Shi, W.: A new characterization of the sporadic simple groups. Group Theory. Proceedings of the Singapore group theory conference 1987 K. N. Cheng et al. Walter de Gruyter Berlin (1989), 531-540. MR 0981868 | Zbl 0657.20017
[13] Zhang, L., Liu, X.: Characterization of the projective general linear groups $PGL(2,q)$ by their orders and degree patterns. Int. J. Algebra Comput. 19 (2009), 873-889. DOI 10.1142/S0218196709005433 | MR 2589419 | Zbl 1189.20017

Partner of