Previous |  Up |  Next


classical linear connection; natural operator
We prove that the problem of finding all ${\mathcal {M} f_m}$-natural operators ${C\colon Q\rightsquigarrow QT^{r*}}$ lifting classical linear connections $\nabla $ on $m$-manifolds $M$ into classical linear connections $C_M(\nabla )$ on the $r$-th order cotangent bundle $T^{r*}M=J^r(M,\mathbb R )_0$ of $M$ can be reduced to the well known one of describing all $\mathcal {M} f_m$-natural operators $D\colon Q\rightsquigarrow \bigotimes ^pT\otimes \bigotimes ^qT^*$ sending classical linear connections $\nabla $ on $m$-manifolds $M$ into tensor fields $D_M(\nabla )$ of type $(p,q)$ on $M$.
[1] Dębecki, J.: Affine liftings of torsion-free connections to Weil bundles. Colloq. Math. 114 (2009), 1-8. DOI 10.4064/cm114-1-1 | MR 2457274
[2] Gancarzewicz, J.: Horizontal lift of connections to a natural vector bundle. Differential Geometry Proc. 5th Int. Colloq., Santiago de Compostela, Spain, 1984, Res. Notes Math. 131 Pitman, Boston (1985), 318-341 L. A. Cordero. MR 0864879 | Zbl 0646.53028
[3] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. I. Interscience Publishers, New York (1963). MR 0152974 | Zbl 0119.37502
[4] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer Berlin (1993). MR 1202431
[5] Kurek, J., Mikulski, W. M.: The natural operators lifting connections to tensor powers of the cotangent bundle. Miskolc Math. Notes 14 (2013), 517-524. MR 3144087
[6] Kureš, M.: Natural lifts of classical linear connections to the cotangent bundle. J. Slovák Proc. of the 15th Winter School on geometry and physics, Srní, 1995, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 43 (1996), 181-187. MR 1463520 | Zbl 0905.53018
[7] Mikulski, W. M.: The natural bundles admitting natural lifting of linear connections. Demonstr. Math. 39 (2006), 223-232. MR 2223893 | Zbl 1100.58001
Partner of
EuDML logo