Previous |  Up |  Next


Schrödinger type equation; short-time Fourier transform; modulation space; classical Hamiltonian; complex interpolation
We give a new representation of solutions to a class of time-dependent Schrödinger type equations via the short-time Fourier transform and the method of characteristics. Moreover, we also establish some novel estimates for oscillatory integrals which are associated with the fractional power of negative Laplacian $(-\Delta )^{\kappa /2}$ with $1\leq \kappa \leq 2$. Consequently the classical Hamiltonian corresponding to the previous Schrödinger type equations is studied. As applications, a series of new boundedness results for the corresponding propagator are obtained in the framework of modulation spaces. The main results of the present article include the case of wave equations.
[1] Bényi, Á., Gröchenig, K., Okoudjou, K., Rogers, L. G.: Unimodular Fourier multipliers for modulation spaces. J. Funct. Anal. 246 (2007), 366-384. DOI 10.1016/j.jfa.2006.12.019 | MR 2321047 | Zbl 1120.42010
[2] Córdoba, A., Fefferman, C.: Wave packets and Fourier integral operators. Commun. Partial Differ. Equations 3 (1978), 979-1005. DOI 10.1080/03605307808820083 | MR 0507783 | Zbl 0389.35046
[3] Feichtinger, H. G.: Modulation spaces on locally compact abelian groups. Wavelets and Their Applications, Proc. Internat. Conf., Chennai, India M. Krishna, R. Radha, S. Thangavelu Allied Publishers, New Delhi (2003), 99-140 Updated version of a technical report, University of Vienna, 1983.
[4] Feichtinger, H. G.: Banach spaces of distributions of Wiener's type and interpolation. Functional Analysis and Approximation, Proc. Conf., Oberwolfach 1980 Internat. Ser. Numer. Math. 60 Birkhäuser, Basel (1981), 153-165. MR 0650272
[5] Gröchenig, K.: Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis Birkhäuser, Boston (2001). MR 1843717 | Zbl 0966.42020
[6] Hörmander, L.: Estimates for translation invariant operators in $L^{p}$-spaces. Acta Math. 104 (1960), 93-140. DOI 10.1007/BF02547187 | MR 0121655 | Zbl 0093.11402
[7] Kato, K., Kobayashi, M., Ito, S.: Representation of Schrödinger operator of a free particle via short-time Fourier transform and its applications. Tohoku Math. J. (2) 64 (2012), 223-231. DOI 10.2748/tmj/1341249372 | MR 2948820 | Zbl 1246.35171
[8] Kato, K., Kobayashi, M., Ito, S.: Remark on wave front sets of solutions to Schrödinger equation of a free particle and a harmonic oscillator. SUT J. Math. 47 (2011), 175-183. MR 2953118 | Zbl 1256.35104
[9] Kato, K., Kobayashi, M., Ito, S.: Estimates on modulation spaces for Schrödinger evolution operators with quadratic and sub-quadratic potentials. J. Funct. Anal. 266 (2014), 733-753. DOI 10.1016/j.jfa.2013.08.017 | MR 3132728 | Zbl 1294.35010
[10] Kitada, H.: Scattering theory for the fractional power of negative Laplacian. J. Abstr. Differ. Equ. Appl. 1 (2010), 1-26. MR 2747652 | Zbl 1208.35097
[11] Wang, B., Hudzik, H.: The global Cauchy problem for the NLS and NLKG with small rough data. J. Differ. Equations 232 (2007), 36-73. DOI 10.1016/j.jde.2006.09.004 | MR 2281189 | Zbl 1121.35132
Partner of
EuDML logo