Previous |  Up |  Next


Full entry | Fulltext not available (moving wall 24 months)      Feedback
asymptotically intertwined; Riesz projection; spectral semidistance; quasinilpotent equivalent
Let $A$ be a unital Banach algebra over $\mathbb C$, and suppose that the nonzero spectral values of $a$ and $b\in A$ are discrete sets which cluster at $0\in \mathbb C$, if anywhere. We develop a plane geometric formula for the spectral semidistance of $a$ and $b$ which depends on the two spectra, and the orthogonality relationships between the corresponding sets of Riesz projections associated with the nonzero spectral values. Extending a result of Brits and Raubenheimer, we further show that $a$ and $b$ are quasinilpotent equivalent if and only if all the Riesz projections, $p(\alpha ,a)$ and $p(\alpha ,b)$, correspond. For certain important classes of decomposable operators (compact, Riesz, etc.), the proposed formula reduces the involvement of the underlying Banach space $X$ in the computation of the spectral semidistance, and appears to be a useful alternative to Vasilescu's geometric formula (which requires the knowledge of the local spectra of the operators at each $0\not =x\in X$). The apparent advantage gained through the use of a global spectral parameter in the formula aside, various methods of complex analysis can then be employed to deal with the spectral projections; we give examples illustrating the usefulness of the main results.
[1] Alexander, H., Wermer, J.: Several Complex Variables and Banach Algebras (3rd edition). Graduate Texts in Mathematics 35 Springer, New York (1998). MR 1482798
[2] Brits, R. M., Raubenheimer, H.: Finite spectra and quasinilpotent equivalence in Banach algebras. Czech. Math. J. 62 (2012), 1101-1116. DOI 10.1007/s10587-012-0066-x | MR 3010259 | Zbl 1274.46094
[3] Colojoară, I., Foiaş, C.: Quasi-nilpotent equivalence of not necessarily commuting operators. J. Math. Mech. 15 (1966), 521-540. MR 0192344
[4] Foiaş, C., Vasilescu, F.-H.: On the spectral theory of commutators. J. Math. Anal. Appl. 31 (1970), 473-486. DOI 10.1016/0022-247X(70)90001-6 | MR 0290146
[5] Laursen, K. B., Neumann, M. M.: An Introduction to Local Spectral Theory. London Mathematical Society Monographs. New Series 20 Clarendon Press, Oxford University Press, New York (2000). MR 1747914 | Zbl 0957.47004
[6] Levin, B. Y.: Lectures on Entire Functions. In collaboration with Y. Lyubarskii, M. Sodin, V. Tkachenko. Translated by V. Tkachenko from the Russian manuscript Translations of Mathematical Monographs 150 American Mathematical Society, Providence (1996). MR 1400006 | Zbl 0856.30001
[7] Razpet, M.: The quasinilpotent equivalence in Banach algebras. J. Math. Anal. Appl. 166 (1992), 378-385. DOI 10.1016/0022-247X(92)90304-V | MR 1160933 | Zbl 0802.46064
[8] Vasilescu, F.-H.: Analytic Functional Calculus and Spectral Decompositionsk. Mathematics and Its Applications (East European Series) 1 D. Reidel Publishing, Dordrecht (1982), translated from the Romanian. MR 0690957
[9] Vasilescu, F.-H.: Some properties of the commutator of two operators. J. Math. Anal. Appl. 23 (1968), 440-446. DOI 10.1016/0022-247X(68)90080-2 | MR 0229078 | Zbl 0159.43402
[10] Vasilescu, F. H.: Spectral distance of two operators. Rev. Roum. Math. Pures Appl. 12 (1967), 733-736. MR 0222699 | Zbl 0156.38204
Partner of
EuDML logo