Previous |  Up |  Next


Full entry | Fulltext not available (moving wall 24 months)      Feedback
finite group; number of subgroups of possible orders
Counting subgroups of finite groups is one of the most important topics in finite group theory. We classify the finite non-nilpotent groups $G$ whose set of numbers of subgroups of possible orders $n(G)$ has exactly two elements. We show that if $G$ is a non-nilpotent group whose set of numbers of subgroups of possible orders has exactly 2 elements, then $G$ has a normal Sylow subgroup of prime order and $G $ is solvable. Moreover, as an application we give a detailed description of non-nilpotent groups with $n(G)=\{1, q+1\}$ for some prime $q$. In particular, $G$ is supersolvable under this condition.
[1] Bhowmik, G.: Evaluation of divisor functions of matrices. Acta Arith. 74 (1996), 155-159. MR 1373705 | Zbl 0848.15015
[2] Guo, W. B.: Finite groups with given normalizers of Sylow subgroups. II. Acta Math. Sin. 39 Chinese (1996), 509-513. MR 1418684 | Zbl 0862.20014
[3] M. Hall, Jr.: The Theory of Groups. Macmillan Company, New York (1959). MR 0103215 | Zbl 0084.02202
[4] Huppert, B.: Endliche Gruppen. I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134 Springer, Berlin German (1967). MR 0224703 | Zbl 0217.07201
[5] Qu, H., Sun, Y., Zhang, Q.: Finite $p$-groups in which the number of subgroups of possible order is less than or equal to $p^3$. Chin. Ann. Math., Ser. B 31 (2010), 497-506. DOI 10.1007/s11401-010-0590-7 | MR 2672246 | Zbl 1216.20014
[6] Shao, C., Shi, W., Jiang, Q.: Characterization of simple $K_4$-groups. Front. Math. China 3 (2008), 355-370. DOI 10.1007/s11464-008-0025-x | MR 2425160 | Zbl 1165.20020
[7] Tang, F.: Finite groups with exactly two conjugacy class sizes of subgroups. Acta Math. Sin., Chin. Ser. 54 Chinese (2011), 619-622. MR 2882946 | Zbl 1265.20031
[8] Tărnăuceanu, M.: Counting subgroups for a class of finite nonabelian $p$-groups. An. Univ. Vest Timiş., Ser. Mat.-Inform. 46 (2008), 145-150. MR 2791473 | Zbl 1199.20020
[9] Zhang, J.: Sylow numbers of finite groups. J. Algebra 176 (1995), 111-123. DOI 10.1006/jabr.1995.1235 | MR 1345296 | Zbl 0832.20042
Partner of
EuDML logo