Full entry |
PDF
(0.2 MB)
Feedback

derived cone; $m$-dissipative operator; local controllability

References:

[1] Aubin, J. P., Frankowska, H.: **Set-Valued Analysis**. Systems and Control: Foundations and Applications 2 Birkhäuser, Boston (1990). MR 1048347 | Zbl 0713.49021

[2] Barbu, V.: **Nonlinear Semigroups and Differential Equations in Banach Spaces**. Noordhoff, Leyden (1976). MR 0390843 | Zbl 0328.47035

[3] Căpraru, I., Cernea, A.: **On the existence of solutions for nonlinear differential inclusions**. 14 pages, DOI:102478/aicu-2014-0016 (to appear) in Anal. Univ. "Al. I. Cuza", Iaşi. MR 3300732

[4] Cernea, A.: **Local controllability of hyperbolic differential inclusions via derived cones**. Rev. Roum. Math. Pures Appl. 47 (2002), 21-31. MR 1978185 | Zbl 1055.49002

[5] Cernea, A.: **Derived cones to reachable sets of differential-difference inclusions**. Nonlinear Anal. Forum 11 (2006), 1-13. MR 2251460 | Zbl 1131.34047

[6] Cernea, A.: **Derived cones to reachable sets of discrete inclusions**. Nonlinear Stud. 14 (2007), 177-187. MR 2327830 | Zbl 1213.93012

[7] Cernea, A., Mirică, Ş.: **Derived cones to reachable sets of differential inclusions**. Mathematica 40 (1998), 35-62. MR 1701249 | Zbl 1281.34020

[8] Hestenes, M. R.: **Calculus of Variations and Optimal Control Theory**. Wiley, New York (1966). MR 0203540 | Zbl 0173.35703

[9] Lakshmikantham, V., Leela, S.: **Nonlinear Differential Equations in Abstract Spaces**. International Series in Nonlinear Mathematics: Theory, Methods and Applications 2 Pergamon Press, Oxford (1981). MR 0616449 | Zbl 0456.34002

[10] Mirică, Ş.: **New proof and some generalizations of the minimum principle in optimal control**. J. Optimization Theory Appl. 74 (1992), 487-508. DOI 10.1007/BF00940323 | MR 1181848 | Zbl 0795.49013

[11] Mirică, Ş.: **Intersection properties of tangent cones and generalized multiplier rules**. Optimization 46 (1999), 135-163. DOI 10.1080/02331939908844449 | MR 1729825 | Zbl 0959.90048