Previous |  Up |  Next


Full entry | Fulltext not available (moving wall 24 months)      Feedback
Morrey-Herz space; variable exponent; sublinear operator; commutator
We introduce a new type of variable exponent function spaces $M\dot K^{\alpha (\cdot ),\lambda }_{q,p(\cdot )}(\mathbb R^n)$ of Morrey-Herz type where the two main indices are variable exponents, and give some propositions of the introduced spaces. Under the assumption that the exponents $\alpha $ and $p$ are subject to the log-decay continuity both at the origin and at infinity, we prove the boundedness of a wide class of sublinear operators satisfying a proper size condition which include maximal, potential and Calderón-Zygmund operators and their commutators of BMO function on these Morrey-Herz type spaces by applying the properties of variable exponent and BMO norms.
[1] Almeida, A., Drihem, D.: Maximal, potential and singular type operators on Herz spaces with variable exponents. J. Math. Anal. Appl. 394 (2012), 781-795. DOI 10.1016/j.jmaa.2012.04.043 | MR 2927498 | Zbl 1250.42077
[2] Cruz-Uribe, D., Diening, L., Fiorenza, A.: A new proof of the boundedness of maximal operators on variable Lebesgue spaces. Boll. Unione Mat. Ital. (9) 2 (2009), 151-173. MR 2493649 | Zbl 1207.42011
[3] Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C.: The boundedness of classical operators on variable $L^p$ spaces. Ann. Acad. Sci. Fenn., Math. 31 (2006), 239-264. MR 2210118 | Zbl 1100.42012
[4] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: The maximal function on variable $L^p$ spaces. Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. MR 1976842
[5] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017 Springer, Berlin (2011). MR 2790542 | Zbl 1222.46002
[6] Herz, C.: Lipschitz spaces and Berstein's theorem on absolutely convergent Fourier transforms. J. Math. Mech. 18 (1968), 283-323. MR 0438109
[7] Ho, K.-P.: The fractional integral operators on Morrey spaces with variable exponent on unbounded domains. Math. Inequal. Appl. 16 (2013), 363-373. MR 3059976 | Zbl 1260.42009
[8] Izuki, M.: Boundedness of commutators on Herz spaces with variable exponent. Rend. Ciec. Mat. Palermo (2) 59 (2010), 199-213. DOI 10.1007/s12215-010-0015-1 | MR 2670690 | Zbl 1202.42029
[9] Izuki, M.: Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 36 (2010), 33-50. DOI 10.1007/s10476-010-0102-8 | MR 2606575 | Zbl 1224.42025
[10] Izuki, M.: Fractional integrals on Herz-Morrey spaces with variable exponent. Hiroshima Math. J. 40 (2010), 343-355. MR 2766665 | Zbl 1217.42034
[11] Izuki, M.: Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent. Math. Sci. Res. J. 13 (2009), 243-253. MR 2582455 | Zbl 1193.42078
[12] Izuki, M., Sawano, Y.: Variable Lebesgue norm estimates for BMO functions. Czech. Math. J. 62 (2012), 717-727. DOI 10.1007/s10587-012-0042-5 | MR 2984631 | Zbl 1265.42087
[13] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. MR 1134951
[14] Lerner, A. K.: On some questions related to the maximal operator on variable $L^p$ spaces. Trans. Am. Math. Soc. 362 (2010), 4229-4242. DOI 10.1090/S0002-9947-10-05066-X | MR 2608404
[15] Lu, S., Xu, L.: Boundedness of rough singular integral operators on the homogeneous Morrey-Herz spaces. Hokkaido Math. J. 34 (2005), 299-314. DOI 10.14492/hokmj/1285766224 | MR 2158999 | Zbl 1081.42012
[16] Lu, S. Z., Yang, D. C., Hu, G.: Herz Type Spaces and Their Applications. Science Press, Beijing (2008).
Partner of
EuDML logo